• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.556-561
http://dx.doi.org/10.15407/ujpe61.06.0561    Paper

Naumenko A.1, Kulikov L.2, Konig N.2

1 Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
2 Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
(3, Krzhizhanovs’kyi Str., Kyiv 03680, Ukraine)

Raman Spectra of Graphene-Like Nanoparticles of Molybdenum and Tungsten Disulfides

Section: Nanosystems
Original Author's Text: English

Abstract: The Raman spectra obtained in the case of graphene-like 2H-MoS2 and 2H-WS2 nanoparticles and depending on their average sizes in the [013] and [110] crystallographic directions are reported. It is established that the Raman spectra of graphene-like 2H-MoS2 nanoparticles and micron particles are closely related. Similarities of the Raman spectra point to the homogeneity of graphene-like 2H-MoS2 nanoparticles. The small shifts and the Raman spectrum line widening, for graphene-like 2H-MoS2 and 2H-WS2 nanoparticles, which are caused by the influence of the sizes of nanoparticles and their anisotropy, have been observed. The dependence of Raman spectra of graphene-like 2H-MoS2 nanoparticles on the their size in the crystallographic direction [110] is first shown, i.e. the positions of bands in the spectrum depend not only on the number of nanolayers S-Mo-S, but also on the size in the [110] direction.

Key words: MoS2, WS2 layered materials, graphene-like materials, Raman spectroscopy, vibrational-electronic interaction.

References:

  1. Z.Y. Zeng, Z.Y. Yin, X. Huang,H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed. 50, 1109 (2011).   CrossRef   PubMed
  2. H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, and H. Zhang, Small 8, 682 (2012).   CrossRef   PubMed
  3. H. Li,Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. Fam, A. Tok, Q. Zhang, and H. Zhang, Small ,8, 63 (2012).   CrossRef   PubMed
  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).   CrossRef   PubMed
  5. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov,and A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).   CrossRef   PubMed   PubMedC
  6. J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De et al., Science 331, 568 (2011).   CrossRef   PubMed
  7. X. Huang,Z. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, and H.Zhang, Small 7, 1876 (2011).   CrossRef   PubMed
  8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).   CrossRef   PubMed
  9. X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).   CrossRef   PubMed
  10. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).   CrossRef   PubMed
  11. Q. He, S.X. Wu, Z.Y. Yin, and H. Zhang, Chem. Sci. 3, 1764 (2012).   CrossRef
  12. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Small 9, 1974 (2013), doi: 10.1002/smll.201202919.   CrossRef
  13. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 3, 187401 (2006).   CrossRef   PubMed
  14. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Adv. Phys., 60, 413 (2011).   CrossRef
  15. P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A.C. Ferrari, Nature Mater. 11, 294 (2012).   CrossRef   PubMed
  16. S. Najmaei, Z. Liu, P.M. Ajayan, and J. Lou, Appl. Phys. Lett. 100, 013106 (2012).   CrossRef
  17. J.H. Fan, P. Gao, A.M. Zhang, B.R. Zhu, H.L. Zeng, X.D. Cui, R. He, and Q.M. Zhang, J. of Appl. Phys. 115, 053527 (2014).   CrossRef
  18. J.L. Verble, and T.J. Wieting, Phys. Rev. Lett. 25, 362 (1970).   CrossRef
  19. T.J. Wieting, and J.L. Verble, Phys. Rev. B 3, 4286 (1971).   CrossRef
  20. T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, J. Phys. Soc. Jpn. 49, 1069 (1980).   CrossRef
  21. T. Sekine, T. Nakashizu, K. Toyoda, K. Uchinokura, and E. Matsuura, Solid State Comm. 35, 371 (1980).   CrossRef
  22. C. Sourisseau, F. Cruege, M. Fouassier, M. Alba, Chem. Phys. 150, 281 (1991).   CrossRef
  23. G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schuller, and T. Korn, Appl. Phys. Lett. 101, 101906 (2012).   CrossRef
  24. X. Zhang, W.P. Han, J.B. Wu, S. Milana,Y. Lu, Q.Q. Li, A.C. Ferrari, and P.H. Tan, ArXiv 2012, arXiv:1212.6796.
  25. A. Molina-Sanchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011).   CrossRef
  26. J.L. Veblde and T.J. Wieting, Phys. Rev. Lett. 25, 362 (1970).   CrossRef
  27. C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, J. Phys. Chem. C 115, 16354 (2011).   CrossRef
  28. J. Ribeiro-Soares et al., Phys. Rev. B 90, 115438 (2014).   CrossRef
  29. J.L. Veblde and T.J. Wieting, Solid State Comm. 11, 11941 (1972).
  30. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4(5), 2695 (2010).   CrossRef   PubMed
  31. J. Verble and T. Wieting, Phys. Rev. Lett. 25, 362 (1970).   CrossRef
  32. G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 60, 2883 (1999).   CrossRef
  33. T. Wieting and J. Verble, Phys. Rev. B, 3, 4286 (1971).   CrossRef
  34. H. Li, Q. Zhang, C.C.R. Yap, B.K Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).   CrossRef