• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.547-555
http://dx.doi.org/10.15407/ujpe61.06.0547    Paper

Fedorovych R.1, Gavrilko T.1, Lopatina Ya.1, Marchenko A.1, Nechytaylo V.1, Senenko A.1, Viduta L.1, Baran J.2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: gavrilko@gmail.com)
2 Institute of Low Temperatures and Structure Research
(PAN, 2, Okolna Str., Wroclaw, Poland; e-mail: gavrilko@gmail.com)

Structure, Morphology, and Photoluminescence of Vacuum Deposited Rubrene Thin Layers

Section: Nanosystems
Original Author's Text: English

Abstract: Among organic semiconductors, rubrene (C42H28, 5,6,11,12-tetraphenyltetracene, Rub) is extensively studied in recent years, since it exhibits interesting physical properties such as very high charge carrier mobilities in organic field-effect transistors at room temperature. Rub is used as a laser dye and as a fluorescent dopant in other organic light-emitting diodes (OLEDs) to improve the characteristics such as lifetime, stability, color, and brightness. However, there are controversies as to the Rub degradation both in the bulk state and thin layers. So, the better understanding of these phenomena is crucial for improving the performance of organic devices. In this work, we present the results on complex studies of the molecular structure, morphology, and photoluminescence (PL) of Rub layers deposited on freshly cleaved KBr(100) and Au(111) substrates by vacuum thermal evaporation. Additionally, the two-component vacuum deposited (VD) Rub-tetracene (Tc) films were studied. Special attention was paid to the susceptibility of films to the oxidation under ambient conditions. The chemical structure and molecular ordering in the obtained VD thin organic films were evaluated by FTIR spectroscopy, and the structure of the very first Rub layers on atomically smooth Au(111) surfaces was studied with scanning tunneling microscopy (STM). From the changes in the peaks position and the intensity of room-temperature PL spectra of the films with time, the degradation kinetics of the Rub emission is analyzed.

Key words: rubrene, C42H28, 5,6,11,12-tetraphenyltetracene, Rub-tetracene

References:

  1. R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, and V. Podzorov, Phys. Status Sol. a 201, 1302 (2004).   CrossRef
  2. E. Menard, V. Podzorov, S.H. Hur, A. Gaur, M.E. Gershenson, and J.A. Rogers, Adv. Mater. 16, 2097 (2004).   CrossRef
  3. J. Takeya, M. Yamagishi, Y. Tominari et al., Appl. Phys. Lett. 90, 102120 (2007).   CrossRef
  4. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C.D. Merritt, H. Murata, and Z.H. Kafafi, Appl. Phys. Lett. 75, 766 (1999).   CrossRef
  5. H. Aziz and Z.D. Popovic, Appl. Phys. Lett. 80, 2180 (2002).   CrossRef
  6. Z. Zhilin, J. Xueyin, and X. Shaohong, Thin Solid Films 363, 61 (2000).   CrossRef
  7. Y. Hamada, H. Kanno, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, T. Usuki, and K. Shibata, Appl. Phys. Lett. 72, 1939 (1998).   CrossRef
  8. M. Kytka, A. Gerlach, F. Schreiber, and J. Kov’ac, Appl. Phys. Lett. 90, 131911 (2007).   CrossRef
  9. E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, and M. Campione, Chem. Mater. 23, 3246 (2011).   CrossRef
  10. D. K¨afer and G. Witte, Phys. Chem. Chem. Phys. 7, 2850 (2005).   CrossRef   PubMed
  11. E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, and M. Campione, Chem. Mater. 23, 3246 (2011).   CrossRef
  12. H. Najafov, D. Mastrogiovanni, E. Garfunkel, L.C. Feldman, and V. Podzorov, Adv. Mater. 23, 981 (2011).   CrossRef   PubMed
  13. Keke K. Zhang, Org. Electr. 11, 1928 (2010).   CrossRef
  14. S. Uttiya, L. Raimondo, and M. Campione et al., Synth. Metals 161, 2603 (2012).   CrossRef
  15. V. Podzorov, V.M. Pudalov, and M.E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003).   CrossRef
  16. S.F. Nelson, Y.-Y. Lin, D.J. Gundlach, and T.N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).   CrossRef
  17. R.J. Chesterfield, J.C. McKeen, C.R. Newman et al., J. Appl. Phys. 95, 6396 (2004).   CrossRef
  18. S.R. Forrest, Nature 428, 911 (2004).   CrossRef   PubMed
  19. D.E. Henn, W.G. Williams, and D.J. Gibbons, J. of Appl. Crystallogr. 4, 256 (1971).   CrossRef
  20. T. Petrenko, O. Krylova, F. Neese, and M. Sokolowski, New J. of Phys. 11, 015001 (2009).   CrossRef
  21. M. Kytka, L. Gisslen, A. Gerlach, U. Heinemeyer, J. Kov’aˇc, R. Scholz, and F. Schreiber, J. of Chem. Phys. 130, 214507 (2009).   CrossRef   PubMed
  22. D. Kafer, L. Ruppel, G. Witte, and C. Woll, Phys. Rev. Lett. 95, 166602 (2005).   CrossRef   PubMed
  23. W.F. Maddams and I.A.M. Royaud, Spectroch. Acta, Part A 46, 309 (1990).
  24. M. Kameya, T. Naito, and T. Inabe, Bull. Chem. Soc. Jpn. 73, 61 (2000).   CrossRef
  25. L.J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975), Vol. 1.
  26. C. Kloc, K.J. Tan, M.L. Toh, K.K. Zhang, Y.P. Xu, Appl. Phys. A 95 219 (2009).   CrossRef
  27. R.D. Fedorovich, V.B. Nechytaylo, L.V. Viduta, T.A. Gavrilko, A.A. Marchenko, A.G. Naumovets, A.I. Senenko, P.V. Shabatyn, and J. Baran, Spectrosc. Lett. 45, 372 (2012).   CrossRef
  28. V.V. Cherepanov, R.D. Fedorovich, O.E. Kiyayev, A.G. Naumovets, V.B. Nechytaylo, P.M. Tomchuk, and L.V. Viduta, Appl. Phys. Lett. 105, 193302-1 (2014).   CrossRef