• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 6, p.531-536
http://dx.doi.org/10.15407/ujpe61.06.0531    Paper

Sugakov V.1, Ostapenko N.2, Ostapenko Yu.2, Kerita O.3, Strelchuk V.4, Kolomys O.4, Watanabe A.5

1 Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
(47, Prosp. Nauky, Kyiv 03680, Ukraine)
2 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: nina.ostapenko@gmail.com)
3 National Technical University of Ukraine “Kyiv Polytechnic Institute”
(37, Prosp. Peremogy, Kyiv 03056, Ukraine)
4 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Prosp. Nauky, Kyiv 03680, Ukraine)
5 Institute of Chemical Reactions, Tohoku University
(980-8578 Sendai, Japan)

Interaction of Optical Vibrations With Charge Traps and the Thermoluminescence Spectra of Polymers

Section: Solid Matter
Original Author's Text: English

Abstract: The energy spectrum of hole traps is investigated in organic polymer poly(di-n-hexylsilane) by the fractional thermally stimulated luminescence (TSL) in the 5–40 K temperature range. In addition, the Raman spectrum of the polymer is studied at 300 K. For the first time, the structure on a TSL curve is observed. It is found that the obtained activation energies of traps coincide with the frequencies of Si–Si vibrations of the polymer chain active in the Raman spectra. These results have been explained within a model, by which the release of charge carriers from traps may be activated via the resonant energy transfer from Si–Si vibrations to the charge carriers. The model explains the appearance of a structure on the TSL curve.

Key words: poly(di-n-hexylsilane), traps, thermoluminescence, Raman spectra, activation energy

References:

  1. Y.R. Kim, M. Lee, J.R.G. Thorne, R.M. Hochstrasser, and J.M. Zeigler, Chem. Phys. Lett. 75, 145 (1988).
  2. H. Suzuki, H. Meyer, S. Hoshino, and D. Haarer, J. Appl. Phys. 78, 2684 (1995).   CrossRef
  3. A. Sharma, M. Katiyar, Deepak, S. Seki, and S. Tagawa, Appl. Phys. Lett. 8, 143511 (2006).   CrossRef
  4. M. Pope and C.E. Swenberg, in Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, N.Y., 1999), p. 877.
  5. H. Bassler, in Semiconducting Polymers: Chemistry, Physics and Engineering, edited by G. Hadziioannou and P.F. van Hutten (Wiley-VCH, Weinheim, 2000).
  6. H. Bassler, Phys. Status Solidi B 175, 15 (1993).   CrossRef
  7. V.I. Arkhipov and G.J. Adriaenssens, J. Phys.: Condens. Matter. 8, 7909 (1996).   CrossRef
  8. M. Kryszewski, J. Ulanski, J.K. Jeszka, and M. Zielinski, Polym. Bull. 8, 187 (1982).   CrossRef
  9. R.J. Fleming and J. Hagekyriakou, Radiat. Prot Dosim. 8, 99 (1984).
  10. .R.J. Fleming, Radiat. Phys. Chem. 36, 59 (1990).
  11. I. GIowacki and J. Ulanski, J. Appl. Phys. 78, 1019 (1995).   CrossRef
  12. E. Dobruchowska, L. Okrasa, I. Glowacki, J. Ulanski, and G. Boiteux, Polymer 45, 6027 (2004).   CrossRef
  13. J. Vanderschueren, A. Linkens, and J. Niezette, J. Polym. Sci. Part B: Polym. Phys. 24, 697 (1986).   CrossRef
  14. R.H. Partridge, in Radiation Chemistry of Macromolecules (Academic Press, New York, 1972), vol. 1, p. 193, Chapter 10.
  15. D.V. Lebedev, E.M. Ivan'kova, A.A. Kalachev, V.A. Marikhin, L.P. Myasnikova et al., J. of Struct. Chem. 51, 109 (2010).   CrossRef
  16. H. Kuzmany, J.F. Rabolt, B.L. Farmer, and R.D. Miller, J. Chem. Phys. 85, 7413 (1986).   CrossRef
  17. S.S. Bukalov, L.A. Leites, G.I. Magdanurov, and R. West, J. Organomet. Chem. 685, 51 (2003).   CrossRef
  18. A. Gumenyuk, N. Ostapenko, Yu. Ostapenko, O. Kerita, and S. Suto, Chem. Phys. 394, 36 (2012).   CrossRef
  19. A. Gumenjuk, N. Ostapenko, Yu. Ostapenko, and O. Kerita, Fiz. Nizk. Temper. 38, 740 (2012).
  20. V.I. Sugakov and N.I. Ostapenko, Chem. Phys. 456, 22 (2015).   CrossRef
  21. H. Gorbecht and D. Hofmann, J. Phys. Chem. Solids 27, 509 (1996).
  22. I.A. Tale, Phys. Status Solidi A 66, 65 (1981).   CrossRef