• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 5, p.440-448
doi:10.15407/ujpe61.05.0440    Paper

Ponezha E.A.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrologichna Str., Kyiv 03680, Ukraine)

Decay of Intensity Correlation Function near Instability Point for the Model of Resonant Tunneling

Section: General Problems of Theoretical Physics
Original Author's Text: English

Abstract: The decay of the correlation function C(t) of an electron flow intensity near an instability point for the process of resonant tunneling through a double barrier structure is considered. It is supposed that the intensity of the incoming flow may fluctuate under the influence of an external noise, both white and colored. The correlation function C(t) behavior is analyzed, by using methods leading to the single-exponential approximation such as the method of projection operator and the method of mean relaxation time. Moreover, the method based on a combination of high- and low-frequency expansions of the Laplace transform of C(t), which has allowed the correlation function to be approximated by two decaying exponentials, is applied. The numerical simulation has shown that the latter approach unlike the others gives correct results near the instability point.

Key words: resonant tunneling, intensity correlation function decay, instability point.

References:
1. S. Grossman, Phys. Rev. A 17, 1123 (1978).   CrossRef
2. A. Hernandez-Machado, M. San Miguel, and J.M. Sancho, Phys. Rev. A 29, 3388 (1984).   CrossRef
3. W. Nadler and K. Schulten, Z. Phys. B: Condensed Matter 59, 53 (1985).   CrossRef
4. W. Nadler and K. Schulten, Z. Phys. B: Condensed Matter 72, 535 (1988).   CrossRef
5. W. Nadler and K. Schulten, Phys. Rev. Lett. 51, 1712 (1983).   CrossRef
6. W. Nadler and K. Schulten, J. Chem. Phys. 82, 151, (1985).   CrossRef
7. J.M. Noriega, L. Pesquera, and M.A. Rodriguez, Phys. Rev. A 43, 4008 (1991).   CrossRef   PubMed
8. J.M. Noriega, L. Pesquera, M.A. Rodriguez, J. Casade-munt, and A. Hernandez-Machado, Phys. Rev. A 44, 2094 (1991).   CrossRef   PubMed
9. A. Hernandez-Machado, J. Casademunt, M.A. Rodrigues, L. Pesquera, and J.M. Noriega, Phys. Rev. A 43, 1744 (1991).   CrossRef   PubMed
10. J.M. Sancho, M. San Miguel, S.L. Katz, and J.D. Gunton, Phys. Rev. A 26, 1589 (1982).   CrossRef
11. V.V. Mitin, V.A. Kochelap, and M.A. Stroscio, Introduction to Nanoelectronics. Science, Nanotechnology, Engi-neering, and Applications (Cambridge Univ. press, Cam-bridge, 2008).
12. V.N. Ermakov and E.A. Ponezha, Metallofiz. Nov. Tekhnol. 30, 585, (2008).
13. E.A. Ponezha, Ukr. Phys. J. 55, 244 (2010).
14. V.N. Ermakov and E.A. Ponezha, Metallofiz. Nov. Tekhnol. 33, 45, (2011).
15. E.A. Ponezha, Metallofiz. Nov. Tekhnol. 36, 713, (2014).
16. A.S. Davydov and V.N. Ermakov, Physica D 28, 168 (1987).   CrossRef
17. M.R. Young and S. Singh, Phys. Rev. A 38, 238 (1988).   CrossRef