• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 5, p.393-399
doi:10.15407/ujpe61.05.0393    Paper

Achenefe Y., Senbeta T., Mal'nev V.N.

Department of Physics, Addis Ababa University
(P.O. Box 1176, Addis Ababa, Ethiopia; e-mail: y.achenefe@yahoo.com)

Electron Scattering in Graphene by Remote Nanomagnets

Section: Nanosystems
Original Author's Text: English

Abstract: The elastic electron scattering by a nonuniform magnetic field of remote nanomagnets in graphene is considered with the help of a modified Born approximation. The nanomagnets are modeled by point-like magnetic dipoles oriented transversally and in parallel to the graphene plane. They can form rather high magnetic fields without any damage of the graphene plane. The electron scattering cross sections are obtained in the closed form and analyzed numerically. It is shown that this mechanism of scattering has nonzero backscattering cross-section and can considerably affect the graphene conductivity.

Key words: graphene, nanomagnets, scattering amplitude.

1. M.I. Katsnelson, Graphene (Carbon in Two Dimensions) (Cambridge Univ. Press, New York, 2012).   CrossRef
2. V.N. Mal'nev, Teshome Senbeta, Yohannes Achenefe, Physica E 60, 214–219 (2014).
3. M. Kabir, D.G. Kanhere, and A. Mookerjee, Phys. Rev. B 73, 075210-1–075210-4 (2006).
4. L. Liu, G.Y. Guo, C.S. Jayanthi, and S.Y. Wu, Phys. Rev. Lett. 88, 217206-1–217206-4 (2002).
5. L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) (Elsevier, Oxford, 1977).
6. G.B. Arfken and H.J. Weber, Mathematical Methods for Physicists (Academic Press, New York, 2005).
7. P.S. Novikov, Phys. Rev. B 245935 (2006).
8. A. Jablonski, F. Salvat, and C. J. Powell, J. Phys. Chem. Ref. Data 33, No. 2, (2004).   CrossRef
9. A. Zazunov, A. Kundu, A. H¸tten, and R. Egger, Phys. Rev. B 82, 155431 (2010).   CrossRef