• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 5, p.381-392
doi:10.15407/ujpe61.05.0381    Paper

Olikh Ya.M., Tymochko M.D.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: jaroluk3@ukr.net)

Peculiarities of Current Flow in Strongly Compensated Low-Resistance CdTe:Cl Crystals under Ultrasonic Loading

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: To elucidate the mechanism of influence of ultrasound on the temperature, T, dependence of conductivity, σ(T), in low-resistance CdTe:Cl (NCl ≈ 1024 m−3) single crystals of the n-type, the Hall effect and the relaxation kinetics of σ(t) at the ultrasound (fUS ~ 10 MHz, WUS ~ 10W/m2) switching-on and -off have been studied in a temperature interval from 77 to 300 K. A completely reversible dynamical influence of ultrasound is revealed for the first time. It has different characters for the low (LT, T < 180 K) and high (HT, T > 200 K) temperature intervals. Acoustically stimulated changes in the HT region are found to be in-significant: the mobility of charge carriers decreases a little, and long-term processes of σ(t) relaxation are not observed. In the LT region, the relative acoustically stimulated changes grow; in particular, the duration of σ(t) relaxation processes increases, and they reveal a two-stage character. To explain this phenomenon, the model of a heterogeneous semiconductor containing clusters of impurity defects in vicinities of dislocations is applied. A mechanism is proposed that relates the “instant” increase of σ(t) with the acoustically stimulated reduction of the amplitude of fluctuations of the large-scale potential owing to the enlargement of the effective electronic radius of dislocation impurity clusters. Long-term (50–500 s) temperature-dependent relaxation processes are governed by the diffusive reconstruction of the point-defect structure in the cluster bulk, including the transformation of acceptor (V2−CdCl+Te)-complexes into neutral (V2−Cd2Cl+Te)0 ones.

Key words: ultrasound, dislocations, CdTe single crystals, Hall effect, conductivity relaxation.

1. I.V. Ostrovs'kyi and A.A. Korotchenkov. Acoustooptics (Vyshcha Shkola, Kyiv, 2003) (in Ukrainian).
2. S. Ostapenko, N.E. Korsunskaya, and M.K. Sheinkman, Solid State Phenom. 85–86, 317 (2002).   CrossRef
3. O.Ya. Olikh, Ultrasonics 56, 545 (2015).   CrossRef   PubMed
4. Ya.M. Olikh and O.Ya. Olikh, Sensor. Elektron. Mikrosyst. Tekhnol. 1, 19 (2004).
5. A.I. Vlasenko, Ya.M. Olikh, and R.K. Savkina, Fiz. Tekh. Poluprovodn. 33, 410 (1999).
6. B.N. Babentsov, S.I. Gorban', I.Ya. Gorodetskii et al., Fiz. Tekh. Poluprovodn. 25, 1243 (1991).
7. D.V. Korbutyak, S.W. Mel'nychuk, E.V. Korbut, and M.M. Borysyk, Cadmium Telluride: Impurity-Defect States and Detector Properties (Ivan Fedorov, Kyiv, 2000) (in Ukrainian).
8. V.I. Khivrych, Effects of Compensation and Ionizing Radiation in CdTe Single Crystals (Institute for Nuclear Research, Kyiv, 2010) (in Ukrainian).
9. M.V. Alekseenko, E.N. Arkadyeva, and A.A. Matveev, Fiz. Tekh. Poluprovodn. 4, 414 (1970).
10. N.V. Agrinskaya, E.N. Arkadyeva, and A.I. Terentyev, Fiz. Tekh. Poluprovodn. 23, 231 (1989).
11. N.V. Agrinskaya, M.V. Alekseenko, E.N. Arkadyeva et al., Fiz. Tekh. Poluprovodn. 9, 320 (1975).
12. N.V. Agrinskaya and V.V. Shashkova, Fiz. Tekh. Poluprovodn. 24, 697 (1990).
13. N.V. Agrinskaya and A.N. Alyoshin, Fiz. Tverd. Tela 31, 277 (1989).
14. N.V. Agrinskaya and V.I. Kozub, Fiz. Tekh. Poluprovodn. 32, 703 (1998).
15. Electronic Properties of Dislocations in Semiconductors, edited by Yu.A. Osipyan (Editorial URSS, Moscow, 2000) (in Russian).
16. V.B. Shikin and Yu.V. Shikina, Usp. Fiz. Nauk 165, 887 (1995).   CrossRef
17. M. Reiche, M. Kittler, W. Erfurt et al., J. Appl. Phys. 115, 194303 (2014).   CrossRef
18. A.A. Matveev and A.I. Terentyev, Fiz. Tekh. Poluprovodn. 34, 1316 (2000).
19. Ya.M. Olikh and N.D. Timochko, in Proceedings of the 4th International Conference ISMART 2014 (Belorus. Gos. Univ. Publ. Center, Minsk, 2014), p. 112 (in Russian).
20. M.I. Ilashchuk, A.A. Parfenyuk, and K.S. Ulyanitskyi, Ukr. Fiz. Zh. 31, 126 (1986).
21. Ya.M. Olikh and R.K. Savkina, Ukr. Fiz. Zh. 42, 1385 (1997).
22. Ya.M. Olikh and M.D. Tymochko, Techn. Phys. Lett. 37, 37 (2011).   CrossRef
23. Physics of A II B VI compounds, edited by A.N. Georgobiani and M.K. Sheikman (Nauka, Moscow,1986) (in Russian).
24. V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) (in Russian).
25. M.K. Sheinkman and A.Ya. Shik, Fiz. Tekh. Poluprovodn. 10, 209 (1976).
26. I.A. Gerko, V.I. Khrupa, V.P.Klad'ko, E.N. Kislovskii, and V.N. Merinov, Zavodsk. Laborat. 54, 65 (1988).
27. L.R. Weisberg, J. Appl. Phys. 33, 1817 (1962).   CrossRef
28. E.D. Golovkina, N.N. Levchenya, and A.Ya. Shik, Fiz. Tekh. Poluprovodn. 10, 383 (1976).
29. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).   CrossRef
30. N.A. Poklonskii, Ionization Equilibrium and Hopping Conductivity in Doped Semiconductors (Belorus. Gos. Univ. Publ. House, Minsk, 2004) (in Russian).
31. M.M. Baran, I.M. Vas'kovych, Nauk. Visn. NLTU 22.15, 336 (2012).
32. S.A. Omel'chenko, A.A. Gorban', M.F. Bulanyi, and A.A. Timofeev, Fiz. Tverd. Tela 48, 830 (2006).
33. Ultrasound. The Small Encyclopedia, edited by I.P. Golyamina (Soviet Encyclopedia, Moscow, 1979) (in Russian).
34. V.N. Pavlovich, Phys. Status Solidi B 180, 97 (1993).   CrossRef