• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 5, p.375-380
doi:10.15407/ujpe61.05.0375    Paper

Bulavin L.A., Belous O.I., Svechnikova O.S.

Taras Shevchenko National University of Kyiv, Faculty of Physics
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: bulavin221@gmail.com, o_bilous@ua.fm, oksana.svechnikova@gmail.com)

Anomalous Ultrasound Attenuation near the Critical Point of n-Pentanol–Nitromethane Solution Stratification

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract: A binary n-pentanol–nitromethane solution in the homogeneous state near the critical stratification point is acoustically studied in a frequency range of 5÷2800 MHz. The experiment confirmed the existence of the anomalous ultrasound attenuation, which can be analyzed in terms of the effective ultrasound absorption. On the basis of experimental data, the regular and fluctuation components of the effective ultrasound absorption coefficient of the solution are resolved. It is shown that the fluctuation part of the effective absorption coefficient can be described in the framework of the Ferrell–Bhattacharjee theory of heat capacity relaxation. On the basis of this theory with the use of the obtained experimental data, the crossover scaling function is determined, and its parameters n and Ω1/2 are found.

Key words: binary solutions, critical stratification point, ultrasound absorption coefficient, crossover function.

1. M.P. Kozlovskii, Condens. Matter. Phys. 8, 473 (2005).   CrossRef
2. K.A. Chalyy, L.A. Bulavin, and A.V. Chalyi, J. Phys. Stud.9, 66 (2005).
3. O.V. Chalyi and O.V. Zaitseva, Ukr. J. Phys. 54, 366(2009).
4. M.P. Kozlovskii and R.V. Romanik, J. Molec. Liq. 167, 14(2012).   CrossRef
5. D. Nikitin and V. Mazur, Int. J. Therm. Sci. 62, 44 (2012).   CrossRef
6. S. Artemenko, T. Lozovsky, and V. Mazur, J. Phys.: Con-dens. Matter 20, 244119 (2008).   CrossRef
7. L.A. Bulavin, O.Yu. Aktan, and Yu.F. Zabashta, Phys. Sol.State 50, 2270 (2008).   CrossRef
8. I. Iwanowski, S.Z. Mirzaev, K. Orzechowski et al., J. Molec.Liq. 145, 103 (2009).   CrossRef
9. S.Z. Mirzaev and U. Kaatze, Chem. Phys. 393,129 (2012).   CrossRef
10. V.A. Shutilov, Fundamental Physics of Ultrasound (Gor-don and Breach, New York, 1988).
11. V.S. Sperkach, A.D. Alekhin, and O.I. Bilous, Ukr. J. Phys.49, 655 (2004).
12. T. Hornowski and M. Lobowski, Acta Phys. Pol. A 5, 671 (1991).   CrossRef
13. I. Iwanowski, R. Behrends, and U. Kaatze, J. Chem. Phys. 120, 9192 (2004).   CrossRef   PubMed
14. R.M. Hill, Phys. Status Solidi B 103, 319 (1981).   CrossRef
15. V.S. Sperkach, A.D. Alekhin, and O.I. Bilous, Ukr. J. Phys.49, 975 (2004).
16. Mathcad Prime 3.0/Mathcad Prime 2.0
17. J.K. Bhattacharjee and R.A. Ferrell, Phys. Rev. A 24, 1643 (1981).   CrossRef
18. J.K. Bhattacharjee, I. Iwanowski, and U. Kaatze, J. Chem.Phys. 131, 174502 (2009).   CrossRef   PubMed
19. J.K. Bhattacharjee and S.Z. Mirzaev, Int. J. Thermophys.33, 469 (2012).   CrossRef
20. H.C. Burstyn, J. V. Sengers, J.K. Bhattacharjee et al.,Phys. Rev. A 28, 1577 (1983).   CrossRef
21. M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).
22. A.D. Alekhin and O.I. Bilous, Teplofiz. Vys. Temp. 53, 204 (2015).
23. R.A. Ferrell and J.K. Bhattacharjee, Phys. Rev. A 31, 1788 (1985).   CrossRef
24. R. Folk and G. Moser, Phys. Rev. E 57, 705 (1998).   CrossRef
25. A. Onuki, J. Phys. Soc. Jpn. 66, 511 (1997).   CrossRef