• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 4, p.325-330
doi:10.15407/ujpe61.04.0325    Paper

Popovych V.I.1, Ievtushenko A.I.1, Lytvyn O.S.2, Romanjuk V.R.2, Tkach V.M.3, Baturyn V.A.4, Karpenko O.Y.4, Dranchuk M.V.1, Klochkov L.O.1, Dushejko M.G.5, Karpyna V.A.1, Lashkarov G.V. 1

1 I.M. Frantsevych Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
(3, Krzhyzhanivs’kyi Str., Kyiv 03680, Ukraine; e-mail: popovych.vas@gmail.com)
2 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Nauky Ave., Kyiv 03028, Ukraine)
3 V. Bakul Institute for Superhard Materials, Nat. Acad. of Sci. of Ukraine
(2, Avtozavodska Str., Kyiv 04074, Ukraine)
4 Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
(58, Petropavlivs’ka Str., Sumy 40030, Ukraine)
5 National Technical University of Ukraine “Kyiv Polytechnic Institute”
(37, Peremogy Ave., Kyiv 03056, Ukraine)

Effect of Argon Deposition Pressure on the Properties of Aluminum-Doped ZnO Films Deposited Layer-By-Layer Using Magnetron Sputtering

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: ZnO:Al films are deposited layer-by-layer onto silicon and glass substrates, by using the radiofrequency magnetron sputtering method at various argon pressures from 0.5 to 2 Pa in a deposition chamber. The influence of this pressure on the structure and the optical and electrical properties of ZnO:Al films is studied. Higher argon pressures are found to reduce the electron mobility in transparent conductive ZnO:Al films and to worsen their conducting properties owing to the free electron scattering by grain boundaries. An increase in the free electron scattering at higher argon pressures reduces the transparency of ZnO:Al films in the visible spectral range.

Key words: ZnO films, aluminum doping, argon pressure effect, X-ray diffraction analysis.

1. B. Szyszka, V. Sittinger, X. Jiang, R.J. Hong, W. Werner, A. Pflug, M. Ruske, and A. Lopp, Thin Solid Films 442, 179 (2003).   CrossRef
2. S. Flickyngerova, V. Tvarozek, and P. Gaspierik, J. Electr. Eng. 61, 291 (2010).
3. G.V. Lashkarev, V.A. Karpyna, V.I. Lazorenko, A.I. Ievtushenko, I.I. Shtepliuk, and V.D. Khranovskyy, Low Temp. Phys. 37, 226 (2011).   CrossRef
4. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).   CrossRef
5. W.T. Seeber, M.O. Abou-Helal, S. Barth, D. Beil, T. Hoöche, H.H. Afify, and S.E. Demian, Mater. Sci. Semicond. Process. 2, 45 (1999).   CrossRef
6. V. Khranovskyy, A. Ulyashin, G. Lashkarev, B.G. Svensson, and R. Yakimova, Thin Solid Films 516, 1396 (2008).   CrossRef
7. E.L. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, Thin Solid Films 516, 8141 (2008).   CrossRef
8. D. Jiles, Introduction to the Electronic Properties of Materials (Chapman and Hall, London, 1994).   CrossRef
9. S. Fernandez, A. Martinez-Steele, J.J. Gardai, and F.B. Naranjo, Thin Solid Films 517, 3152 (2009).   CrossRef
10. K. Ellmer and R. Wendt, Surf. Coat. Technol. 93, 21 (1997).   CrossRef
11. M. Saad and A. Kassis, Mater. Chem. Phys. 136, 205 (2012).   CrossRef
12. A. Ievtushenko, O. Khyzhun, I. Shtepliuk, V. Tkach, V. Lazorenko, and G. Lashkarev, Acta Phys. Pol. A 124, 858 (2013).   CrossRef
13. Jian-Wei Hoon, Kah-Yoong Chan, J. Krishnasamy, TeckYong Tou, and D. Knip, Appl. Surf. Sci. 257, 2508 (2011).
14. Z.A. Wang, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen, and S.M. Huang, Solid State Electron. 53, 1149 (2009).   CrossRef
15. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London, 1974).   CrossRef
16. S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, B. Abdallah, and N.H. Zoubir, Thin Solid Films 519, 5 (2010).   CrossRef
17. F. Urbach, Phys. Rev. 92, 1324 (1953).   CrossRef