• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.265-278
doi:10.15407/ujpe61.03.0265    Paper

Kharchenko D.O., Kharchenko V.O., Bashtova A.I.

Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
(58, Petropavlivs’ka Str., Sumy 40030, Ukraine; e-mail: dikh@ipfcentr.sumy.ua)

Self-Organization of an Ensemble of Vacancies under the Spinodal Decomposition of Binary Systems at Continuous Irradiation

Section: General Problems of Theoretical Physics
Original Author's Text: Ukrainian

Abstract: The redistribution processes of non-equilibrium vacancies under the spinodal decomposition in a continuously irradiated solid solution have been considered. The consideration is carried out in the framework of the generalized Cahn–Hilliard model, which makes allowance for the structural disorder formation under irradiation. As the defect production rate increases, the spinodal decomposition processes are found to transform into the processes of vacancy pattern formation. It is shown that the formation of vacancy clusters is accompanied by the pattern selection processes. The decomposition and patterning kinetics, as well as the statistical distributions of solute and vacancy concentrations at various dose rates are studied.

Key words: Cahn–Hilliard model, spinodal decomposition in binary systems.

References:
1. J.H. Evans, Nature 229, 403 (1971).   CrossRef   PubMed
2. S. Saass and B.L. Eyre, Phil. Mag. 27, 1447 (1973).   CrossRef
3. P.B. Johnson, D.J. Mazey, and J.H. Evans, Radiat. Eff. 78, 147 (1983).   CrossRef
4. J.E. Evans and D.J. Mazey, J. Nucl. Mater. 138, 176 (1986).   CrossRef
5. A. Jostobns and K. Farrel, Radiat. Eff. 15, 217 (1972).   CrossRef
6. J.O. Steigler and K. Farrel, Scripta Metall. 8, 651 (1974).   CrossRef
7. V.N. Voevodin and I.M. Neklyudov, Structural-Phase State Evolution and Radiation Resistance of Structural Materials (Naukova Dumka, Kyiv, 2006) (in Russian).
8. D. Walgraef, Spatio-Temporal Pattern Formation (Springer, New York, 1996).
9. D.O. Kharchenko, V.O. Kharchenko, and A.I. Bashtova, Ukr. J. Phys. 58, 993 (2013).   CrossRef
10. D.O. Kharchenko, V.O. Kharchenko, and A.I.Bashtova, Radiat. Eff. Defects Solids 169, 418 (2014).   CrossRef
11. D. Kharchenko, V. Kharchenko, and I.Lysenko, Centr. Eur. J. Phys. 9, 698 (2011).
12. D.O. Kharchenko, V.O. Kharchenko, S.V. Kokhan, and I.O. Lysenko, Ukr. J. Phys. 57, 1069 (2012).
13. G. Martin, Phys. Rev. B 30, 1424 (1984).   CrossRef
14. C. Abromeit and G. Martin, J. Nucl. Mater. 271–272, 251 (1999).   CrossRef
15. N.M. Ghoniem and D. Walgaef, Model. Simul. Mat. Sci. Eng. 1, 569 (1993).   CrossRef
16. D. Walgraef, J. Lauzeral, and N.M. Ghoniem, Phys. Rev. B 53, 14782 (1996).   CrossRef
17. P.A. Selischev and V.I. Sugakov, Radiat. Eff. 133, 237 (1995).   CrossRef
18. V.O. Kharchenko and D.O. Kharchenko, Eur. Phys. J. B 85, 383 (2012).   CrossRef
19. V.O. Kharchenko and D.O. Kharchenko, Condens. Matter Phys. 16, 33001 (2013).   CrossRef
20. F.Kh. Mirzoev, V.Ya. Panchenko, and L.A.Shelepin, Physics Uspekhi 39, 1 (1996).   CrossRef
21. L.A. Maksimov and A.I. Ryazanov, Sov. Phys. JETP 52, 1170 (1980).
22. A.I. Olemskoi and A.Ya. Flat, Phys. Solid State 35, 278 (1993).
23. V. Kharchenko and D. Kharchenko, Phys. Rev. E 89, 042133 (2014).   CrossRef   PubMed
24. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).   CrossRef
25. L.S. Darken, Trans. AIME 175, 184 (1948).
26. A.M. Gusak, S.V. Kornienko, and G.V. Lutsenko, Def. Diff. Forum 264, 109 (2007).   CrossRef
27. A.V. Nazarov and K.P. Gurov, Fiz. Met. Metalloved. 37, 496 (1974).
28. K.P. Gurov and A.M.Gusak, Fiz. Met. Metalloved. 59, 1062 (1985).
29. A.M. Gusak, T.V. Zaporozhets, Yu.O. Lyashenko, S.V. Kornienko, M.O. Pasichnyy, and A.S. Shirinyan, DiffusionControlled Solid State Reactions in Alloys, Thin Films and Nanosystems (Wiley-VCH, Berlin, 2010).   CrossRef   PubMed
30. N.V. Tyutyunnyk and A.M. Gusak, Ukr. Fiz. Zh. 57, 629 (2012).
31. R. Bullough and R.C. Newman, Rep. Prog. Phys. 33, 101 (1970).   CrossRef
32. F.Kh. Mirzoev, V.Ya. Panchenko, and L.A.Shelepin, Techn. Phys. Lett. 22, N 13, 28 (1996). 33. D.O. Kharchenko, S.V. Kokhan, and A.V. Dvornichenko, Physica D 238, 2251 (2009).   CrossRef
34. D. Batogkh, M. Hildebrant, F. Krischer, and A. Mikhailov, Phys. Rep. 288, 435 (1997).   CrossRef
35. D.O. Kharchenko, S.V. Kokhan, and A.V. Dvornichenko, Metallofiz. Noveish. Tekhnol. 31, 23 (2009).
36. P.K. Galenko, D. Kharchenko, and I. Lysenko, Physica A 389, 3443 (2010).   CrossRef
37. D. Kharchenko, I. Lysenko, and P.K. Galenko, in Stochastic Differential Equations, edited by N. Halidias (Nova Science, New York, 2011), p. 97.
38. D.O. Kharchenko, I.O. Lysenko, and V.O. Kharchenko, Usp. Fiz. Met. 13, 1001 (2012).
39. D.O. Kharchenko, I.O. Lysenko, and S.V. Kokhan, Eur. Phys. J. B 76, 37 (2010).   CrossRef
40. D. Kharchenko, I. Lysenko, and V. Kharchenko, Physica A 389, 3356 (2010).   CrossRef
41. D.O. Kharchenko, I.O. Lysenko, and V.O. Kharchenko, Ukr. J. Phys. 55, 1225 (2010).
42. R.A. Enrique and P. Bellon, Phys. Rev. Lett. 84, 2885 (2000).   CrossRef   PubMed
43. R.A. Enrique and P. Bellon, Phys. Rev. B 63, 134111 (2001).   CrossRef
44. J.J. Hoyt and M. Haataja, Phys. Rev. E 83, 174106 (2011).
45. A.D. Marwick, J. Phys. F 8, 1849 (1978).   CrossRef