• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.255-264
doi:10.15407/ujpe61.03.0255    Paper

Butenko D.V.1,2, Tomchuk P.M.1

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03680, Ukraine; e-mail: ptomchuk@iop.kiev.ua)
2 National University of Kyiv-Mohyla Academy
(2, H. Skovoroda Str., Kyiv 04070, Ukraine; e-mail: daniil.butenko@gmail.com)

Influence of the Magnetic Dipole Moment of a Metal Nanoellipsoid on the Scattering of Electromagnetic Waves

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The influence of the magnetic dipole moment of a non-spherical metal nanoparticle on the scattering of electromagnetic radiation by the particle has been studied in the framework of the kinetic approach. Analytical expressions for the scattering cross-section of spheroidal particles are obtained, and their dependence on the incident radiation wavelength and the nanoparticle eccentricity is analyzed. The contribution of a magnetic moment to the scattering at frequencies far from the plasmon resonance is shown to be comparable with that of the electric moment, with the ratio between the magnetic and electric moment contributions being maximum for spherical nanoparticles. The calculations are performed for an arbitrary ratio between the particle size and the free electron path, which enables our results to be compared with the Mie theory in the case where the electron scattering in the particle bulk dominates.

Key words: electromagnetic radiation, metal nanoparticle, nanoellipsoid.

1. B. Hourahine and F. Papoff, Opt. Express 21, 17 (2013).   CrossRef   PubMed
2. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, and B. Luk'yanchuk, Nature Comm. 4, 1527 (2013).   CrossRef   PubMed
3. P. Liu, Ju. Liu, Ji. Liu, X. Zhao, J. Xie, and Y. Wang, Opt. Commun. 284, 1076 (2011).   CrossRef
4. R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, Phys. Rev. B 90, 125417 (2014).   CrossRef
5. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vall’ee, Phys. Rev. Lett. 107, 057402 (2011).   CrossRef   PubMed
6. M. Sivis, M. Duwe, B. Abel, and C. Ropers, Nature Phys. 9, 304 (2013).   CrossRef
7. P. Berto, M.S.A. Mohamed, H. Rigneault, and G. Baffou, Phys. Rev. B 90, 035439 (2014).   CrossRef
8. G.V. Hartland, Chem. Rev. 111, 3858 (2011).   CrossRef   PubMed
9. V.V. Klimov, Nanoplasmonics (Nauka, Moscow, 2012) (in Russian).
10. P.M. Tomchuk and N.I. Grigorchuk, Phys. Rev. B 73, 155423 (2006).   CrossRef
11. N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84, 085448 (2011).   CrossRef
12. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1984).
13. A.F. Alexandrov, L.S. Bogdankevich, and A.A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Berlin, 1984).   CrossRef
14. H.J. Trodahl, Phys. Rev. B 19, 1316 (1979).   CrossRef
15. E.D. Belotsky, S.P. Luk'yanets, and P.M. Tomchuk, Zh. Eksp. Teor. Fiz. 101, 163 (1992).
16. S.V. Berezkina, I.A. Kuznetsova, and A.A. Yushkanov, Zh. Tekhn. Fiz. 74, 67 (2004).
17. A.G. Lesskis, V.E. Pasternak, and A.A. Yushkanov, Zh. Eksp. Teor. Fiz. 83, 310 (1982).
18. I.A. Kuznetsova, M.E. Lebedev, and A.A. Yushkanov, Pis'ma Zh. Tekhn. Fiz. 40, 8 (2014).