• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.248-254
doi:10.15407/ujpe61.03.0248    Paper

Nakhodkin M.G., Fedorchenko M.I.

Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

Photoelectron Emission from Si–Gd–O Cathode

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Electronic and emission properties of photocathodes fabricated on the basis of multilayered structures of oxidized Gd atoms deposited on the Si(100) surface and additionally covered with fresh layers of Gd atoms have been studied as functions of the structure holding time under vacuum, by using the methods of photoelectron (= 1.9÷10.2 eV) and Auger electron spectroscopies. It is found that, although the photocathode work function is equal to about 0.5 eV at some research stages, the photoemission is registered only at ≥ 2.8 eV. The analysis of the results allowed us to propose a model for the energy structure of the photocathode that agrees with experimental data. According to this model, the near-surface region of a photocathode, about 1 nm in thickness, consists of Gd2O3 with the energy gap width of about 5.3 eV. The distance from the Fermi level to the conduction band bottom equals about 2.7 eV in the Gd2O3 bulk. In the forbidden gap below the Fermi level, the bulk states and filled surface states associated with structural defects. A complicated dipole layer appears on the surface, and this gives the substantial reduction of the work function.

Key words: adsorption, Gd, O, Si(100), oxidation, Gd2O3, work function.

References:
1. H.D.B. Gottlob, A. Stefani, and M. Schmidt, J. Vac. Sci. Technol. B 27, 258 (2009).   CrossRef
2. J.H.G. Owen, K. Miki, and D.R. Bowler, J. Mater. Sci. 41, 4568 (2006).   CrossRef
3. D. Lee, D.K. Lim, S.S. Bae, S. Kim, R. Ragan, D.A. Ohlberg, Y. Chen, and R.S. Williams, Appl. Phys. A 80, 1311, (2005).   CrossRef
4. H. Zhanq, Q. Zhanq, G. Zhao, J. Tang, O. Zhou, and L.C. Qin, J. Am. Chem. Soc. 127, 13120 (2005).   CrossRef   PubMed
5. Byung-Chun, R. Motohash, C. Lorder, and R. Jansen, Nature Mater. 5, 817 (2006).
6. M.G. Nakhodkin and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 4, 261 (2012).
7. M.G. Nakhodkin and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 1, 239 (2014).
8. M.G. Nakhodkin and M.I. Fedorchenko, Ukr. J. Phys. 60, 97 (2015).   CrossRef
9. M.E. Akopyan, I.I. Balyakin, and F.I. Vilesov, Prib. Tekhn. Eksp. N 6, 96 (1961).
10. V.K. Adamchuk, Ph.D. thesis (Leningrad State Univ., Leningrad, 1969) (in Russian).
11. K. Wandelt and C.R. Brundle, Surf. Sci. 157, 162 (1985).   CrossRef
12. G. Molnar, G. Peto, and E. Kotai, Vacuum 41, 1640 (1990).   CrossRef
13. W.A. Henle, M.G. Ramsey, F.P. Netzer, R. Cimino, S. Witzel, and W. Braun, Surf. Sci. 243, 141 (1991).   CrossRef
14. J.C. Chen, G.H. Shen, and L.J. Chen, Appl. Surf. Sci. 142, 291 (1999).   CrossRef
15. Ya.B. Losovyj, D.Wooten, J.C. Santana, J.M. An, K.D. Belashchenko, N. Lozova, J. Petrosky, A. Sokolov, J. Tang, W. Wang, N. Arulsamyand, and P.A. Dowben, J. Phys.: Condens. Matter. 21, 045602 (2009).   CrossRef   PubMed
16. C.R. Abernathy, A.H. Gila, and A.H. Onstine, J. Semicond. Sci. Technol. 3, No. 1, 13 (2003).
17. Materials and Reliability Handbook for Semiconductor Optical and Electronic Devices, edited by O. Ueda and S.J. Pearton (Springer, New York, 2013).
18. S.S. Derbeneva and S.S. Batsanov, Dokl. AN SSSR 175, 1062 (1967).
19. S.S. Batsanov and E.V. Dulepov, Sov. Phys. Solid State 4, 995 (1965).
20. K.A. Gschneidner, Rare-Earth Alloys (Van Nostrand, Princeton, 1961).
21. Jun-Kyu Yang and Hunng-Ho Park, Appl. Phys. Lett. 87, 022104 (2005).   CrossRef
22. I. Lindau and W.E. Spicer, J. Electron Spectrosc. Relat. Phenom. 3, 409 (1974).   CrossRef
23. A.A. Pakhnevich, V.V. Bakin, A.V. Yazykov et al., Pis'ma Zh. Eksp. Teor. Fiz. 79, 592 (2004).