• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.233-239
doi:10.15407/ujpe61.03.0233    Paper

Manilov A.I.

Institute of High Technologies, Taras Shevchenko National University of Kyiv
(60, Volodymyrs’ka Str., Kyiv 01033, Ukraine)

Problems of Application of Porous Silicon to Chemical and Photocatalytic Production of Hydrogen

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Advantages of the use of silicon and porous silicon (PS) for the chemical production of hydrogen have been analyzed and compared with other fuels. An analytic expression is derived for the dependence of the volume of hydrogen produced at the PS interaction with water on the material porosity, as well as for the corresponding energy yield, when the produced gas is used in the power sources of electronic systems. It is found that the silicon porosity growth results in a reduction of the total volume of hydrogen released in the reaction with water, as compared with the amount of H2 obtained from the initial quantity of raw silicon. This effect is explained by significant losses of a material at PS formation. The ratio between the accumulation of hydrogen in the PS material and silicon losses in the etchant is determined to be optimal for the silicon porosity in the interval of 60–70%. When applying the produced hydrogen in fuel cells, the etching of silicon provides a growth of the output power, but reduces the total amount of the produced energy. Those mechanisms are analyzed to demonstrate the inexpediency of using the composites on the basis of pure nano-PS for the photocatalytic water dissociation.

Key words: porous silicon, water dissociation, hydrogen.

References:
1. L.M. Gandía, G. Arzamendi, P.M. Diéguez, Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety (Elsevier, Amsterdam, 2013).
2. A.V. Stepanov, Production of Hydrogen and HydrogenContaining Gases (Kyiv, Naukova Dumka, 1982) (in Russian).
3. A.A. Tsygankov, Ross. Khim. Zh. 6, 25 (2006).
4. U. Bossel, Proc. IEEE 94, 1826 (2006).   CrossRef
5. A.E. Sheindlin and A.Z. Zhuk, Ross. Khim. Zh. 6, 105 (2006).
6. A.I. Manilov, S.V. Litvinenko, S.A. Alekseev, G.V. Kuznetsov, and V.A. Skryshevsky, Ukr. J. Phys. 55, 928 (2010).
7. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J.M. Thomas, Catalysis Today 122, 51 (2007).   CrossRef
8. N. Auner, Deutsche Bank Res. 11, 1 (2004).
9. S. Litvinenko, S. Alekseev, S. Litvinenko, S. Alekseev, V. Lysenko, A. Venturello, F. Geobaldo, L. Gulina, G. Kuznetsov, V. Tolstoy, V. Skryshevsky, E. Garrone, and D. Barbier, Int. J. Hydrogen Energy 35, 6773 (2010).   CrossRef
10. N.R. Mathews, P.J. Sebastian, X. Mathew, and V. Agarwal, Int. J. Hydrogen Energy 28, 629 (2003).   CrossRef
11. E.V. Ametistov, Fundamentals of Modern Power Engineering (MEI, Moscow, 2004) (in Russian).
12. E.S. Falkevich, E.O. Pulner, I.F. Chervonnyi et al., Technology of Semiconductor Silicium (Metallurgiya, Moscow, 1992) (in Russian).
13. G. Korotcenkov and B.K. Cho, Crit. Rev. Solid State Mater. Sci. 35, 153 (2010).   CrossRef
14. A.I. Manilov and V.A. Skryshevsky, Mater. Sci. Eng. B 178, 942 (2013).   CrossRef
15. A.I. Manilov, V.A. Skryshevsky, S.V. Litvinenko, and G.V. Kuznetsov, Patent of Ukraine No. 100084, Bull. No. 21 (2012).
16. V. Parkhutik, Solid-State Electron. 43, 1121 (1999).   CrossRef
17. V. Lysenko, F. Bidault, S. Alekseev, V. Zaitsev, D. Barbier, Ch. Turpin, F. Geobaldo, P. Rivolo, and E. Garrone, J. Phys. Chem. B 109, 19711 (2005).   CrossRef   PubMed
18. L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, Hoboken, 2010).   CrossRef   PubMed
19. O.V. Kozynets and S.V. Litvinenko, Ukr. J. Phys. 57, 1234 (2012).
20. G.V. Kuznetsov, V.A. Skryshevsky, T.A. Vdovenkova, A.I. Tsyganova, P. Gorostiza, and F. Sanz, J. Electrochem. Soc. 148, 528 (2001).   CrossRef
21. V.G. Litovchenko, T.I. Gorbanyuk, V.S. Solntsev, and A.A. Evtukh, Appl. Surf. Sci. 234, 262 (2004).   CrossRef
22. V.E. Primachenko, B.M. Bulach, S.I. Kirilova, V.A. Chernobai, and E.F. Venger, Ukr. J. Phys. 52, 236 (2007).
23. A.I. Manilov, S.A. Alekseev, V.A. Skryshevsky, S.V. Litvinenko, G.V. Kuznetsov, and V. Lysenko, J. Alloys Comp. 492, 466 (2010).