• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.219-225
doi:10.15407/ujpe61.03.0219    Paper

Piatnytskyi D.V., Zdorevsky O.O., Perepelytsya S.M., Volkov S.N.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrolohichna Str., Kyiv, 03680, Ukraine; e-mail: snvolkov@bitp.kiev.ua)

Formation of Complexes of Hydrogen Peroxide Molecules with DNA

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract: A possibility for hydrogen peroxide molecules to form stable complexes with atomic groups in the DNA backbone under the irradiation of the cell medium with high-energy ions has been studied. The energy of complexes is estimated, by taking the electrostatic and van der Waals interactions into account in the framework of the atom-atom potential function method. The interaction with metal counterions, which neutralize the surface charge of a macromolecule under natural conditions, is also taken into consideration. Stable configurations are determined for various complexes consisting of the atoms belonging to a DNA phosphate group, H2O2 and H2O molecules, and a Na+ metal ion. The complexes of hydrogen peroxide molecules with DNA phosphate groups and a counterion are shown to be not less stable than their complexes with water molecules. The attachment of an H2O2 molecule to a phosphate group of the double helix backbone can block the processes of DNA biological functioning and can deactivate the genetic mechanism of a cell.

Key words: DNA, hydrogen peroxide, Bragg peak, ionic therapy

1. L. Gravitz, Nature 491, S49 (2012).   CrossRef   PubMed
2. A. Brown and S. Herman, Radiol. Oncol. 73, 265 (2004).   CrossRef   PubMed
3. G. Kraft, Prog. Part. Nucl. Phys. 45, S473 (2000).   CrossRef
4. H. Suit et al., Radiother. Oncol. 95, 3 (2010).   CrossRef   PubMed
5. C.D. Schlaff, A. Krauze, A. Belard, J.J. O'Connell, and K.A. Camphausen, Radiat. Oncol. 9, 88 (2014).   CrossRef   PubMed   PubMedC
6. N.V. Timofeev-Resovskii, A.V. Savich, and M.I Shalnov, Introduction to Molecular Radiobiology (Meditsina, Moscow, 1981) (in Russian).
7. B. Boudaoiffa, P. Cloutier, D. Hunting, M.A. Huels, and L. Sanche, Science 287, 1658 (2000).   CrossRef
8. N. Hamada, J. Radiat. Res., 50, 1 (2009).   CrossRef   PubMed
9. A.V. Solov'yov, E. Surdutovich, E. Scifoni, I. Mishustin, and W. Greiner, Phys. Rev. E 79, 011909 (2009).   CrossRef   PubMed
10. A.V. Yakubovich, E. Surdutovich, and A.V. Solov'yov, Nucl. Instrum. Methods B 279, 135 (2012).   CrossRef
11. E. Surdutovich, A.V. Yakubovich, and A.V. Solov'yov, Sci. Rep. 3, 1289 (2013).   CrossRef   PubMed   PubMedC
12. E. Surdutovich and A.V. Solov'yov, J. Phys.: Conf. Ser. 438, 012014 (2013).   CrossRef
13. I. Pshenichnov, A. Botvina, I. Mishustin, and W. Greiner, Nucl. Instrum. Methods B 268, 604 (2010).   CrossRef
14. E. Haettner, H. Iwase, and D. Schardt, Radiat. Prot. Dosim. 122, 485 (2006).   CrossRef   PubMed
15. J. Soltani-Nabipour, M A. Popovici, and Gh. Cata-Danil, Romanian Rep. Phys. 62, 37 (2010).
16. B. Pastina and J.A. LaVerne, J. Phys. Chem. A 103, 1592 (1999).   CrossRef
17. S. Le Caer, Water 3, 235 (2011).   CrossRef
18. V. Wasselin-Trupin, G. Baldacchino, S. Bouffard, and B. Hickel, Radiat. Phys. Chem. 65, 53 (2002).   CrossRef
19. M.S. Kreipl, W. Friedland, and H.G. Paretzke, Radiat Environ Biophys, 48, 11 (2009).   CrossRef   PubMed
20. S. Uehara and H. Nikjoo, J. Radiat. Res. 47, 69 (2006).   CrossRef
21. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984).   CrossRef   PubMedC
22. V.B. Zhurkin, V.I. Poltev, and V.L. Florentiev, Molek. Biol. 14, 1116 (1980).
23. V.I. Poltev, and N.V. Shulyupina, Molek. Biol. 18, 1549 (1984).
24. Brief Chemical Encyclopaedia, Vol. 1 (Sovetskaya Entsiklopediya, Moscow, 1961) (in Russian).
25. S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 49, 1074 (2004).
26. S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 24, 261 (2007).   CrossRef   PubMed