• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.213-218
doi:10.15407/ujpe61.03.0213    Paper

Mykytenko N. 

K.D. Ushynskyi South-Ukrainian National Pedagogical University
(26, Staroportofrankivs’ka Str., Odesa 65020, Ukraine; e-mail: mykytenkon@gmail.com)

Radiation-Induced Formation of “Heavy” Clusters in Binary Crystals

Section: Atoms and Molecules
Original Author's Text: Ukrainian

Abstract: Radiation-induced formation of defects in binary crystals with significantly different atomic masses has been studied. The classical molecular dynamics method is used for a modified model that is an alternative for that with pair collisions. A computer program realizing the Verlet algorithm in the framework of the molecular dynamics approach is developed. The results obtained testify to the existence of a certain interval of incident particle energies, at which the so-called “heavy” clusters, i.e. clusters composed of heavier atoms, can be formed.

Key words: radiation-induced defect formation, binary crystals, molecular dynamics, computer simulation.

1. S.C. Parker, E.T. Kelsey, P.M. Oliver, and J.O. Titiloye, Faraday Discuss. 95, 75 (1993).   CrossRef
2. D. Fink, I. Klinkovich, O. Bukelman, R.S. Marks, A. Kiv, D. Fuks, W.R. Fahrner, and L. Alfonta, Biosens. Bioelectron. 24, 2702 (2009).   CrossRef   PubMed
3. R.E. Stoller and L.K. Mansur, An Assessment of Radiation Damage Models and Methods, Oak Ridge National Laboratory, Report Number ORNL/TM-2005/506 (2005).
4. M.T. Robinson and I.M. Torrens, Phys. Rev. B 9, 5008 (1974).   CrossRef
5. T. Schlick, Molecular Modeling and Simulation (Springer, Berlin, 2002).   CrossRef
6. S. Zhen and G.J. Davies, Phys. Status Solidi A 78, 595 (1983).   CrossRef
7. F. Ercolessi, A Molecular Dynamics Primer (Spring College in Computational Physics, ICTP, Trieste, 1997).
8. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 2002).
9. R. Baragiola, Nucl. Instrum. Methods B 237, 520 (2005).   CrossRef
10. K.K. Wittmaack, J. Appl. Phys. 96, 2632 (2004).   CrossRef
11. B.M. Isakov, Perspekt. Mater. 6, 92 (2011).
12. E. Hairer, Ch. Lubich, and G. Wanner, Acta Numerica 1, 399 (2003).   CrossRef
13. A. Troelsen, Pro C# 2010 and the. NET 4 Platform (Apress, New York, 2010).
14. P.J. Deitel and H.M. Deitel, C# 2010 for Programmers (Prentice-Hall, Englewood Cliffs, NJ, 2010).
15. A. Gutterman, Intermediate Scripting,   http://unity3d.com/learn/tutorials/modules/intermediate/scripting (2013).
16. T. Diaz de la Rubia and M.W. Guinan, J. Nucl. Mater. 174, 151 (1990).   CrossRef
17. L.M. Dupuy, E.B. Tadmor, R.E. Miller, and R. Phillips, Phys. Rev. Lett. 95, (2005).
18. V.I. Gaydaenko and V.K. Nikulin, Chem. Phys. Lett. 7, 360 (1970).   CrossRef
19. G.V. Lewis and A. Catlow, J. Phys. Chem. 18, 1149 (1985).
20. S.A. Kiselev, S.R. Bickham, and A.J. Sievers, Phys. Rev. B 50, 9135 (1994).   CrossRef
21. D.E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, MA, 1997), Vol. 2.
22. N. Mykytenko, D. Fink, and A. Kiv, J. Comput. Sci. 6, 34 (2015).   CrossRef