• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 3, p.187-212
doi:10.15407/ujpe61.03.0187    Paper

Prykarpatsky A.K.1,2, Bogolubov N.N.3,4

1 Ivan Franko State Pedagogical University of Drohobych
(Lviv, Ukraine)
2 AGH University of Science and Technology
(Krakow 30059, Poland; e-mail: pryk.anat@ua.fm, prykanat@cybergal.com)
3 Abdus Salam International Centre of Theoretical Physics
(Trieste, Italy)
3 Steklov Mathematical Institute of RAS
(Moscow, Russian Federation; e-mail: nikolai_bogolubov@hotmail.com)

On the Classical Maxwell–Lorentz Electrodynamics, the Electron Inertia Problem, and the Feynman Proper Time Paradigm

Section: Fields and Elementary Particles
Original Author's Text: English

Abstract: The classical Maxwell electromagnetic field and the Lorentz-type force equations are rederived in the framework of the Feynman proper time paradigm and the related vacuum field theory approach. The classical Ampere law origin is rederived, and its relationship with the Feynman proper time paradigm is discussed. The electron inertia problem is analyzed in detail within the Lagrangian and Hamiltonian formalisms and the related pressure-energy compensation principle of stochastic electrodynamics. The modified Abraham–Lorentz damping radiation force is derived, and the electromagnetic electron mass origin is argued.

Key words: classical Maxwell elctrodynamics, electron inertia problem, Feynman proper time paradigm, least action principle, Lagrangian and Hamiltonian formalisms, Lorentz-type force derivation, Ampere law, modified Abraham–Lorentz damping radiation force.

References:
1. M. Abraham, Nachr. von der Gesellsch. der Wissensch. zu Göttingen. Math.-Phys. Kl., S. 20 (1902).
2. R. Abraham, and J.E. Marsden, Foundations of Mechanics (Benjamin, New York, 1978).
3. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).   CrossRef
4. Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (VCH, Weinheim, 2005).   CrossRef
5. A. Annila, Int. J. of Theor. Math. Phys. 2(4), 67 (2012).   CrossRef
6. V.I. Arnold, Mathematical Methods of Classical Mechanics. (Springer, New York, 1978).   CrossRef
7. T.W. Barrett, in: A. Lakhtakia (Ed.), Essays on the Formal Aspects of Maxwell Theory (World Scientific, Singapore, 1993), p. 8.   PubMedC
8. R. Becker, Theorie der Elektrizitat. Bd. II, Elektronentheorie (Teubner, Berlin, 1933).
9. D. Blackmore, A.K. Prykarpatsky, and V.Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis (World Scientific, Singapore, 2011).
10. D. Blackmore, A.K. Prykarpatski, and N.N. Bogolubov, (jr.), Univ. J. of Phys. and Appl. 1(2), 160 (2013).
11. N.N. Bogolubov and N.N. Bogolubov, (jr.) Introduction into Quantum Statistical Mechanics (World Scientific, Singapore, 1986).
12. N.N. Bogolubov (jr.) and A.K. Prykarpatsky, Int. J. Theor. Phys. 5, 237 (2012).
13. N.N. Bogolubov (jr.) and A.K. Prykarpatsky, Found. Phys. 40, 469 (2010).   CrossRef
14. N.N. Bogolubov (jr.), A.K. Prykarpatsky, U. Taneri, and Y.A. Prykarpatsky, J. Phys. A: Math. Theor. 42, 165401 (2009).   CrossRef
15. T.H. Boyer, Phys. Rev. D 8, 1679 (1973).   CrossRef
16. L. Brillouin, Relativity Reexamined, (Academic Press, New York, 1970).
17. O. Darrigol, Les Equations de Maxwell: De McCullagh ´a ´ Lorentz (Belin, Paris, 2005).
18. S. Deser and R. Jackiw, Time travel? arXiv: hepth/9206094 (1992).
19. B. Di Bartolo, Classical Theory of Electromagnetism (World Scientific, Singapore, 2004).   CrossRef
20. P.A.M. Dirac, Proc. R. Soc. Lond. Ser. A 167, 148 (1938).
21. G. Dunner and R. Jackiw, "Peierles substitution" and Chern-Simons quantum mechanics, arXiv: hepth/92004057 (1992).
22. F.J. Dyson, Am. J. Phys. 58, 209 (1990).   CrossRef
23. F.J. Dyson, Phys. Today, 42(2), 32 (1989).   CrossRef
24. A. Einstein, Jahrbuch Radioaktivitat, V 422 (1907).
25. Hans G. Dehmelt in his Nobel Lecture, December 8, (1989), quoted Einstein's own words: "You know, it would be sufficient to really understand the electron".
26. E. Fermi, Nuovo Cim. 25, 159 (1923).   CrossRef
27. R.P. Feynman, Statistical Mechanics (Benjamin, New York, 1998).
28. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics. Electrodynamics (AddisonWesley, Reading, MA, 1964), v. 2.
29. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman lectures on physics. The modern science on the Nature. Mechanics. Space, Time, Motion (Addison-Wesley, Reading, MA, 1963), v. 1.
30. T.L. Gill and W.W. Zachary, Two mathematically equivalent versions of Maxwell equations, Preprint (Univ. of Maryland, 2008).
31. T.L. Gill and W.W. Zachary, Found. Phys. 4, 99 (2011).   CrossRef
32. T.L. Gill, W.W. Zachary, and J. Lindsey, Found. Phys. 31, 1299 (2001).   CrossRef
33. R.J. Glauber, Quantum Theory of Optical Coherence. Selected Papers and Lectures (Wiley-VCH, Weinheim, 2007). 34. C. Godbillon, Geometrie Differentielle et Mecanique Analytique (Hermann, Paris, 1969).
35. R.T. Hammond, Found. Phys. 43, 201 (2013).   CrossRef
36. R.T. Hammond, Electr. J. of Theor. Phys., No. 23, 221 (2010).
37. P. Higgs, Phys. Rev. Lett. 13, 508 (1964)   CrossRef ; Phys. Rev. 145, 1156 (1964).
38. G. t'Hooft, Nucl. Phys. B 35, 167 (1971).
39. K. Huang, Statistical Mechanics (Wiley, New York, 1987).
40. M. Ibison, Found. of Phys. Lett. 16, No. 1, 83 (2003).   CrossRef
41. M. Ibison, Massless electrodynamics, arXiv: physics/ 0106046v5 [physics.gen-ph] 4 Feb. (2004).
42. M. Ibison, J. Phys. A: Math. Gen. 34, 3421 (2001).   CrossRef
43. R. Jackiw, Lorentz violation in a diffeomorphism-invariant theory, arXiv: hep-th/0709.2348 (2007).
44. R. Jackiw and A.P. Polychronakos, Dynamical Poincaré symmetry realized by field-dependent diffeomorphisms, arXiv: hep-th/9809123 (1998).
45. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
46. M. Jammer, Concepts of Mass in Contemporary Physics and Philosophy (Princeton Univ. Press, Princeton, 2009). 47. A. Kastler, Rev. Hist. Sei. 72, 1193 (1977).
48. B.P. Kosyakov, Sov. Phys. Usp. 35(2), 135 (1992).   CrossRef
49. B.P. Kosyakov, Introduction to the Classical theory of Particles and Fields (Springer, Berlin, 2007).   PubMed
50. B.A. Kupershmidt, Diff. Geom. & Appl. 2, 275 (1992).   CrossRef
51. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1983), v. 2. 52. H.A. Lorentz, Proceed. of the Royal Nether. Acad. of Arts and Sci. 6, 809 (1904).
53. H.A. Lorentz, Arch. néerland. des Sci. exact. et natur. 25, 363 (1892); The Theory of Electrons: and Its Applications to the Phenomena of Light and Radiant Heat (Teubner, Leipzig, 1916).
54. H.A. Lorentz, The Theory of Electrons: and Its Applications to the Phenomena of Light and Radiant Heat (Dover, New York, 2011).
55. A.A. Martins and M.J. Pinheiro, Int. J. Theor. Phys. 47, 2706 (2008).   CrossRef
56. A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Liquid Mechanics (Springer, New York, 1993).   CrossRef
57. R. Medina, J. Phys. A: Math. Gen. 3801 (2006).   CrossRef
58. H. Minkowski, Physik. Z. 10, 104 (1909).
59. V.B. Morozov, Physics Uspekhi 181(4), 389 (2011).
60. G.V. Nikolaev, Modern Electrodynamics and Reasons for Its Paradoxicity. Prospects of Construction of Not Inconsistent Electrodynamics. Theories, Experiments, Paradoxes (Tomsk Polytech. Univ., Tomsk, 2003) (in Russian).
61. L. Page and N.I. Adams (jr.), Amer. J. Phys. 13, 141 (1945).   CrossRef
62. P.T. Pappas, Il Nuovo Cimento B 76(2), 189 (1983).   CrossRef
63. W. Pauli, Theory of Relativity (Dover, New York, 1981).
64. D.T. Pegg, Rep. Prog. Phys. 38, 1339 (1975).   CrossRef
65. Y. Pierseaux and G. Rousseaux, Les structures fines de l'electromagnetisme classique et de la relativite restreinte, arXiv: physics/0601023v1, 5 Jan. (2006).
66. H.C.R. Poincaré, Acad. Sci. (Paris) 140, 1504 (1905).
67. A.K. Prykarpatsky, Univ. J. of Phys. and Appl. 2(8), 381 (2014), DOI: 10.13189/ujpa.2014.020804.
68. A.K. Prykarpatsky, N.N. Bogolubov (jr.), and U. Taneri, Int. J. Theor. Phys. 49, 798 (2010).   CrossRef
69. A.K. Prykarpatsky, N.N. Bogolubov (jr.), and U. Taneri, Theor. Math. Phys. 160, 1079 (2009); arXiv lanl: 0807.3691v.8 [gr-gc] 24.08.2008.
70. H.E. Puthoff, Int. J. Theor. Phys. 46, 3005 (2007).   CrossRef
71. O. Repchenko, Field Physics (Moscow, Galeria Publ., 2005).
72. F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, 1965).
73. G. Rousseaux, The gauge non-invariance of classical electromagnetism, arXiv: physics/0506203v1, 28 Jun. (2005).
74. G. Rousseaux, On the physical meaning of the gauge conditions of Classical Electromagnetism: the hydrodynamics analogue viewpoint, arXiv: physics/0511047v1 [physics.class-ph] 5 Nov. (2005).
75. J.J. Slawianowski, Geometry of Phase Spaces (Wiley, New York, 1991).
76. V.M. Simulik, in: What is the Electron? edited by V.M. Simulik (Apeiron, Montreal, 2005), p. 109.
77. G.A. Schott, Electromagnetic Radiation (Cambridge Univ., Cambridge, 1912).
78. W. Thirring, Classical Mathematical Physics (Springer, Berlin, 1992).
79. C. Teitelboim, Phys. Rev. D 1, 1512 (1970).   CrossRef
80. G.T. Trammel, Phys. Rev. 134 (5B), 1183 (1964).   CrossRef
81. J.B. Wheeler and R.P. Feynman, Rev. Mod. Phys. 17, Nos. 2–3, 157 (1945).   CrossRef
82. F. Wilczek, Origins of Mass, MIT-CTP/4379, arXiv: 1206.7114v2 [ hep-ph] 22 Aug. (2012).
83. F. Wilczek, Ann. Henri Poincaré 4, 211 (2003).   CrossRef
84. Y. Yaremko and V. Tretyak, Radiation Reaction in Classical Field Theory (LAMBERT Acad. Publ., Saarbrücken, 2012).   PubMedC