• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 2, p.143-149
doi:10.15407/ujpe61.02.0143    Paper

Neimash V.1, Dovbeshko G.1, Shepelyavyi P.2, Danko V.2, Melnyk V.3, Isaiev M.3, Kuzmich A.3

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03028, Ukraine; e-mail: neimash@gmail.com)
2 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave, Kyiv 03028, Ukraine)
3 Taras Shevchenko National University of Kyiv, Faculty of Physics
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

Raman Scattering in the Process of Tin-Induced Crystallization of Amorphous Silicon

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Metal-induced crystallization in Si–Sn–Si thin film structures has been studied, by using the Raman scattering at various light powers. The Raman spectra are used to monitor the temperature, size, and concentration of Si crystals formed in the amorphous Si matrix. A significant acceleration of the metal-induced crystallization in Si–Sn–Si structures at their laser-assisted annealing in comparison with their annealing in dark is revealed. A basic possibility of the “on line” monitoring of the size and the concentration of Si nanocrystals in the course of their formation is demonstrated.

Key words: solar cell, thin films, nanocrystals, silicon, tin, metal-induced crystallization.

1. M.C. Beard, J.M. Luther, and A.J. Nozik, Nat. Nano 9, 951 (2014).   CrossRef   PubMed
2. Z.I. Alferov, V.M. Andreev, and V.D. Rumyantsev, Semiconductors 38, 899 (2004).   CrossRef
3. B. Yan, G. Yue, X. Xu, J. Yang, and S. Guha, Phys. Status Solidi A 207, 671 (2010).   CrossRef
4. N.S. Lewis, Science 315, 798 (2007).   CrossRef   PubMed
5. R. Søndergaard, M. H¨osel, D. Angmo, T.T. Larsen-Olsen, and F.C. Krebs, Mater. Today 15, 36 (2012).   CrossRef
6. M. Birkholz, B. Selle, E. Conrad, K. Lips, and W. Fuhs, J. Appl. Phys. 88, 4376 (2000).   CrossRef
7. B. Rech, T. Roschek, J. M¨uller, S. Wieder, and H. Wagner, Sol. Energy Mater. Sol. Cells 66, 267 (2001).   CrossRef
8. M.K. van Veen, C.H.M. van der Werf, and R.E.I. Schropp, J. Non-Cryst. Solids 338–340, 655 (2004).   CrossRef
9. Y. Mai, S. Klein, R. Carius, H. Stiebig, L. Houben, X. Geng, and F. Finger, J. Non-Cryst. Solids 352, 1859 (2006).   CrossRef
10. H. Li, R.H. Franken, R.L. Stolk, C.H.M. van der Werf, J.K. Rath, and R.E.I. Schropp, J. Non-Cryst. Solids 354, 2087 (2008).   CrossRef
11. R. Amrani, F. Pichot, L. Chahed, and Y. Cuminal, Cryst. Struct. Theory Appl. 1, 57 (2012).
12. G. Fugallo and A. Mattoni, Phys. Rev. B 89, 045301 (2014).   CrossRef
13. O. Nast and A.J. Hartmann, J. Appl. Phys. 88, 716 (2000).   CrossRef
14. M. Jeon, C. Jeong, and K. Kamisako, Mater. Sci. Technol. 26, 875 (2010).   CrossRef
15. M.A. Mohiddon and M.G. Krishna, J. Mater. Sci. 47, 6972 (2012).   CrossRef
16. D. Van Gestel, I. Gordon, and J. Poortmans, Sol. Energy Mater. Sol. Cells 119, 261 (2013).   CrossRef
17. A. Mohiddon and G. Krishna, in Crystallization – Science and Technology, edited by A. Marcello (InTech, 2012), p. 461.
18. V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Y. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, and V.V. Strelchuk, Semiconductors 45, 1281 (2011).   CrossRef
19. V.B. Neimash, V.M. Poroshin, A.M. Kabaldin, V.O. Yukhymchuk, P.E. Shepelyavyi, V.A. Makara, and S.Y. Larkin, Ukr. J. Phys. 58, 865 (2013).   CrossRef
20. V. Neimash, V. Poroshin, P. Shepeliavyi, V. Yukhymchuk, V. Melnyk, A. Kuzmich, V. Makara, and A.O. Goushcha, J. Appl. Phys. 114, 213104 (2013).   CrossRef
21. V.B. Neimash, A.O. Goushcha, P.E. Shepeliavyi, V.O. Yukhymchuk, V.A. Dan'ko, V.V. Melnyk, and A.G. Kuzmich, Ukr. J. Phys. 59, 1168 (2014).   CrossRef
22. H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).   CrossRef
23. I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).   CrossRef
24. S. Chen and I.C. Hsleh, Solid State Technol. 39, 113 (1996).
25. A.A.D.T. Adikaari and S.R.P. Silva, J. Appl. Phys. 97, (2005).
26. T.Y. Choi, D.J. Hwang, and C.P. Grigoropoulos, Opt. Eng. 42, 3383 (2003).   CrossRef
27. J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, Appl. Phys. Lett. 85, 1232 (2004).   CrossRef
28. V.A. Volodin and A.S. Kachko, Semiconductors 45, 265 (2011).   CrossRef
29. A.V. Emelyanov, A.G. Kazanskii, P.K. Kashkarov, O.I. Konkov, E.I. Terukov, P.A. Forsh, M.V. Khenkin, A.V. Kukin, M. Beresna, and P. Kazansky, Semiconductors 46, 749 (2012).   CrossRef
30. P.J. Newby, B. Canut, J.-M. Bluet, S. Gom`es, M. Isaiev, R. Burbelo, K. Termentzidis, P. Chantrenne, L.G. Fr’echette, and V. Lysenko, J. Appl. Phys. 114, 014903 (2013).   CrossRef
31. M. Balkanski, R.F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).   CrossRef
32. B. Stoib, S. Filser, N. Petermann, H. Wiggers, M. Stutzmann, and M.S. Brandt, Appl. Phys. Lett. 104, 161907 (2014).   CrossRef
33. S. P’erichon, V. Lysenko, B. Remaki, D. Barbier, and B. Champagnon, J. Appl. Phys. 86, 4700 (1999).   CrossRef
34. E. Bustarret, M.A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).   CrossRef
35. W. Cheng and S.-F. Ren, Phys. Rev. B 65, 205305 (2002).   CrossRef
36. A. Hiraki, Low Temperature Reactions at Si/metal Interfaces; What Is Going on at the Interfaces? (NorthHolland, Amsterdam, 1984).