• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 2, p.125-133
doi:10.15407/ujpe61.02.0125    Paper

Ahmed A., Mal'nev V.N., Mesfin B.

Department of Physics, Addis Ababa University
(P. O. Box 1176, Addis Ababa, Ethiopia; e-mail: belaynehmes@yahoo.com)

Microwaves in Structured Metamaterials: Supeluminal, Slow, and Backward Waves

Section: Solid Matter
Original Author's Text: English

Abstract: The dispersion properties of structured metamaterials consisting of strips of a copper wire (electron subsystem) and square copper split-ring resonators (magnetic subsystem) with different and coinciding resonant frequencies are studied. In a narrow frequency band above the resonant frequency of the electron subsystem, the structured metamaterial is described by a negative refractive index. In addition to this, there are some peculiar properties observed in these metamaterials. Among these properties is the nonanalytic behavior of the real part of the refractive index as a function of the frequency with a discontinuity of its derivative in the metamaterial with two resonances. It is also shown that the superluminal, slow, and backward microwaves can exist in the structured metamaterials. However, in the absence of gain components, only the slow microwaves can propagate considerably

Key words: structured metamaterials, supeluminal waves, slow waves, backward waves.

1. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).   CrossRef
2. D.R. Smith, W.J. Padila, D.S. Vier, S.C. Nemat-Nasser, and S. Shultz, Phys. Rev. Lett. 84, 4184 (2000).   CrossRef   PubMed
3. R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, and S. Shultz, Appl. Phys. Lett. 78, 489 (2001).   CrossRef
4. T. Koschny, L. Zhang, and C.M. Soukoulis, Phys. Rev. B 71, 121103(R) (2005).
5. R.A. Shelby, D.R. Smith, and S. Shultz, Science 292, 77 (2001).   CrossRef   PubMed
6. R.W. Boyd, J. Mod. Opt. 56, 1908 (2009).   CrossRef
7. P.W. Milonni, Fast Light, Slow Light and Left-Handed Light (IOP Publ., Bristol, 2005).
8. L.V. Haw, S.E. Harris, Z. Dutton, and C.H. Behroosi, Nature 307, 594 (1999).
9. L.J. Wang, A. Kuzmich, and A. Dogarlu, Nature 406, 277 (2000).   CrossRef   PubMed
10. V.N. Mal'nev and Sisay Shewamare, Physica B 426, 52 (2013).   CrossRef
11. M. Kafesaki, T. Koschny, R.S. Penciu, T.F. Gundogdu, E.N. Economou, and C.M. Soukoulis, J. Opt. A: Pure Appl. Opt. 7 (2005).
12. J.Q. Shen, Phys. Rev. B 73, 045113 (2006).   CrossRef
13. J. Qui, H.Y. Yao, L.W. Li, S. Zoudi, and T.S. Yeo, Phys. Rev. B 75, 155120 (2001).
14. B. Mesfin, V.N. Mal'nev, E.V. Martysh, and Yu.G. Rapoport, Phys. of Plasmas 17, 112109 (2010).   CrossRef
15. S. Deb and D. Gupta, Pramana J. of Phys., 75, 837 (2010).   CrossRef
16. R.W. Ziolkovskii and E. Heyman, Phys. Rev. E 64, 056625 (2001).   CrossRef   PubMed
17. B. Mesfin and V.N. Mal'nev, Physics of Plasmas 19, 032101 (2012).   CrossRef
18. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).
19. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
20. A.K. Sarychev and G. Tartakovskii, Phys. Rev. B 78, 161401 (2008).   CrossRef
21. S.A. Ramakrishna and J.B. Pendry, Phys. Rev. B 67, 201101(R) (2003).
22. A.D. Boardman, Yu.G. Rapoport, N. King, and V.N. Mal'nev, J. Opt. Soc. of Amer. B 24, No. 10, A53 (2007).   CrossRef
23. I.V. Shadrivov, S.K. Morrison, and Y.S. Kivshar, Optics Express, 14, 9344 (2006).   CrossRef   PubMed