• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 2, p.98-106
doi:10.15407/ujpe61.02.0098    Paper

Zhovtyansky V.A.1, Anisimova O.V. 2

1 Gas Institute, National Academy of Sciences of Ukraine
(39, Degtyarivs’ka Str., Kyiv 03113, Ukraine; e-mail: zhovt@ukr.net)
2 National Technical University of Ukraine “Kyiv Polytechnic Institute”
(37, Peremoga Ave., Kyiv 03056, Ukraine)

Role of Anode Processes in Glow Discharge Energetics

Section: Plasmas and Gases
Original Author's Text: Ukrainian

Abstract: The role of anode processes in the formation of self-organized glow discharge (GD) structure is analyzed in the case of spherical diode, the latter, as well as a short plane diode, being characterized by the absence of a positive column. The results of numerical calculations are compared with the experimental GD current-voltage characteristics and the electric field strength distributions measured by the probe method. It is shown that the boundary conditions at the anode should be formulated with regard for a possibility of a potential drop at the anode. In this case, the calculated diode potential decreases significantly and corresponds to experimentally observed results.

Key words: glow discharge, spherical diode, short diode, electric field, anode processes, fluid model, current-voltage characteristics.

1. N.D. Morgulis, A.I. Kravchenko, and V.Ya Chernyak, Zh. Tekhn. Fiz. 27, 2385 (1972).
2. V.L. Granovskii, Electric Current in Gas. Steady-State Current (Nauka, Moscow, 1971) (in Russian).
3. C.H. Thomas and O.S. Duffendack, Phys. Rev. 35, 72 (1930).   CrossRef
4. S.M. Rubens and J.E. Henderson, Phys. Rev. 58, 446 (1940).   CrossRef
5. Yu.B. Golubovskii, V.I. Kolobov, and Sh.Kh. Al-Shavat, Zh. Tekhn. Fiz. 58, 1729 (1988).
6. C. Wilke, H. Deutsch, A. Dinklage, and H. Scheibner, Czech. J. Phys. 48, 1167 (1998).   CrossRef
7. S. Arndt, F. Sigeneger, and R. Winkler, Plasma Chem. Plasma Process. 23, 439 (2003).   CrossRef
8. O.G Didyk, V.A. Zhovtyansky, V.G. Nazarenko, and V.A. Khomych, Ukr. Fiz. Zh. 53, 481 (2008).
9. V.A. Zhovtyansky and Yu.I. Lelyukh, Ukr. Fiz. Zh. 53, 495 (2008).
10. V.A. Zhovtyansky and Yu.I. Lelyukh, Pis'ma Zh. Tekhn. Fiz. 35, 81 (2009).
11. V.A. Zhovtyansky and A.V. Anisimova, Ukr. Fiz. Zh. 59, 1155 (2014).
12. L.B. Loeb, Fundamental Processes of Electrical Discharge in Gases (Wiley, New York, 1955).
13. A.A. Kudryavtsev, A.S. Smirnov, and L.D. Tsendin, Physics of Glow Discharge (Lan', St.Petersburg, 2010) (in Russian).
14. Yu P. Raizer and S.T. Surzhikov, Teplofiz. Vys. Temp. 28, 439 (1990).
15. A.S. Petrusev, S.T. Surzhikov, and J.S. Sheng, Teplofiz. Vys. Temp. 44, 814 (2006).
16. V. Zhovtyansky, V. Khomych, Yu. Lelyukh et al., in Proceedings of the 6-th International Conference on Plasma Physics and Plasma Technology (Minsk, Belarus, 2009), Vol. 1, p. 163.
17. Yu.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1997).
18. Yu.I. Lelyukh, Ukr. Fiz. Zh. 55, 1165 (2010).
19. V.A. Khomich, A.V. Ryabtsev, E.G.Didyk et al., Pis'ma Zh. Tekhn. Fiz. 36, 91 (2010).
20. A.V. Yeletskii, L.A. Palkina, and B.M. Smirnov, Transfer Phenomena in Weakly Ionized Plasma (Atomizdat, Moscow, 1975) (in Russian).
21. A.V. Phelps, J. Phys. Chem. Ref. Data 20, 557 (1991).   CrossRef
22. V.A. Zhovtyansky, O.V. Anisimova, V.O. Khomych et al., Probl. At. Sci. Technol. No. 1, 95 (2011).