• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 2, p.178-180
doi:10.15407/ujpe61.02.0178    Paper

Iakubovskyi D., Yushchenko S.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrologichna Str., Kyiv 03680, Ukraine; e-mail: yakubovskiy@bitp.kiev.ua)

Comptonization of Cosmic Microwave Background by Cold Ultrarelativistic Electron-Positron Pulsar Wind and Origin of ~130 GeV Lines

Section: Chronicle, bibliographic data, and personalia
Original Author's Text: English

Abstract: Previously, an astrophysical explanation of the narrow gamma-ray line-like feature(s) at ∼100 GeV from the Galactic Center region observed by Fermi/LAT [2] was proposed in [1]. The model of [1] is based on the inverse Compton scattering of external ultraviolet/X-ray radiation by a cold ultrarelativistic e+e pulsar wind. We will show that the extra broad ~30 MeV component should arise from the Comptonization of cosmic microwave background radiation. We estimate the main parameters of this component and show that it can be detectable with MeV telescopes such as CGRO/COMPTEL. The location of the CGRO/COMPTEL unidentified source GRO J1823-12 close to the excess of the 105–120-GeV emission (Region 1 of [2]) can be interpreted as an argument in favor of the astrophysical model of the narrow feature(s) at ∼100 GeV.

Key words: gamma-ray line, Galactic Center, pulsar wind, inverse Compton effect, cosmic microwave background radiation.

References:
1. F. Aharonian, D. Khangulyan, and D. Malyshev, Astron. Astrophys. 547, A114 (2012).   CrossRef
2. A. Boyarsky, D. Malyshev, and O. Ruchayskiy, Physics of the Dark Universe 2, 90 (2013).   CrossRef
3. M. Ackermann et al. (FERMI-LAT Collaboration), Phys. Rev. D 88, 082002 (2013).   CrossRef
4. The Fermi-LAT Collaboration, Phys. Rev. D 91, 122002 (2015).   CrossRef
5. T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, J. Cosmol. Astropart. Phys. 7, 54 (2012).   CrossRef
6. C. Weniger, J. Cosmol. Astropart. Phys. 8, 7 (2012).   CrossRef   PubMed
7. E. Tempel, A. Hektor, and M. Raidal, J. Cosmol. Astropart. Phys. 9, 32 (2012).   CrossRef
8. M. Su and D.P. Finkbeiner, e-print arXiv:1207.7060. 9. W. Buchmüller and M. Garny, J. Cosmol. Astropart. Phys. 8, 35 (2012).   CrossRef
10. J.-C. Park and S.C. Park, Phys. Lett. B 718, 1401 (2013). 11. M. Endo, K. Hamaguchi, S. Pei Liew, K. Mukaida, and K. Nakayama, Phys. Lett. B 721, 111 (2013).
12. V. Schönfelder (COMPTEL Collaboration), Astron. Astrophys. Suppl. 143, 145 (2000).   CrossRef
13. F.A. Aharonian, S.V. Bogovalov, and D. Khangulyan, Nature 482, 507 (2012).   CrossRef   PubMed
14. Z. Malkin, e-print arXiv:1202.6128.
15. G.R. Blumenthal and R.J. Gould, Rev. Mod. Phys. 42, 237 (1970).   CrossRef
16. J.A. Pons, B. Link, J.A. Miralles, and U. Geppert, Phys. Rev. Lett. 98, 1101 (2007).
17. S. Zhang, W. Collmar, W. Hermsen, and V. Schönfelder, Astron. Astrophys. 421, 983 (2004).   CrossRef
18. K. Ferrière, Astrophys. J. 497, 759 (1998).   CrossRef
19. V.A. Dogiel, H. Inoue, K. Masai, V. Schönfelder, and A.W. Strong, Astrophys. J. 581, 1061 (2002).   CrossRef