• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 2, p.160-167
doi:10.15407/ujpe61.02.0160    Paper

Ushcats M.V., Ushcats S.J., Mochalov A.A.

Admiral Makarov National University of Shipbuilding
(9, Stalingrad Heroes Str., Mykolaiv 54025, Ukraine; e-mail: mykhailo.ushcats@nuos.edu.ua)

Virial Coefficients of Morse Potential

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Using the numerical quadrature integration method and a modification of the Mayer sampling Monte Carlo technique proposed recently, the virial coefficients of the known three-parameter Morse potential have been calculated to the seventh order inclusive for potential parameter, αD, values of 3.0, 4.0, 6.0, 8.0, and 10.0. At low temperatures, a certain regularity in the behavior of the virial coefficients of all orders (beginning from the third one) is revealed for various αD-values. This regularity can be approximated by an equation similar to that previously obtained for the Lennard-Jones (12–6) and modified Lennard-Jones models.

Key words: Morse potential, virial coefficient, irreducible cluster integral, Mayer sampling.

References:
1. J.E. Mayer and M.G. Mayer, Statistical Mechanics (Wiley, New York, 1977).
2. R.K. Pathria, Statistical Mechanics (ButterworthHeinemann, Oxford, 1997).
3. N. N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics (Interscience, New York, 1962).
4. M.V. Ushcats, Visn. Kharkiv. Nats. Univ. No. 1020, 6 (2012).
5. M.V. Ushcats, Phys. Rev. Lett. 109, 040601 (2012).   CrossRef   PubMed
6. M.V. Ushcats, J. Chem. Phys. 138, 094309 (2013).   CrossRef   PubMed
7. M.V. Ushcats, Phys. Rev. E 87, 042111 (2013).   CrossRef   PubMed
8. V.M. Bannur, Physica A 419, 675 (2015).   CrossRef
9. A.J. Schultz and D.A. Kofke, Mol. Phys. 107, 2309 (2009).   CrossRef
10. A.J. Schultz, N.S. Barlow, V.Chaudhary, and D.A. Kofke, Mol. Phys. 111, 535 (2013).   CrossRef
11. M.V. Ushcats, Ukr. J. Phys. 59, 737 (2014).   CrossRef
12. M.V. Ushcats, Ukr. J. Phys. 59, 172 (2014).   CrossRef
13. M.V. Ushcats and K.D. Yevfymko, Visn. Odess. Nats. Univ. Mat. Mekh. 19, 37 (2014).
14. M.V. Ushcats, J. Chem. Phys. 140, 234309 (2014).   CrossRef   PubMed
15. J.Q. Broughton and G.H. Gilmer, J. Chem. Phys. 79, 5095 (1983).   CrossRef 16. T. Sakagami and K. Fuchizaki, J. Phys.: Conf. Ser. 215, 012123 (2010).   CrossRef
17. Y. Asano and K. Fuchizaki, J. Chem. Phys.137, 174502 (2012).   CrossRef   PubMed
18. M.V. Ushcats, J. Chem. Phys. 141, 101103 (2014).   CrossRef   PubMed
19. J. K. Singh, J. Adhikari, and S. K. Kwak, Fluid Phase Equilibr. 248, 1 (2006).   CrossRef
20. E.M. Apfelbaum, J. Chem. Phys. 134, 194506 (2011).   CrossRef   PubMed
21. P.M. Morse, Phys. Rev. 34, 57 (1929).   CrossRef
22. M.V. Ushcats and A.A. Gaisha, Visn. Kharkiv. Nats. Univ. 18, 67 (2013).
23. W G. Hoover and A.G. De Rocco, J. Chem. Phys. 36, 3141 (1962).   CrossRef
24. D. Frenkel and B. Smit, Understanding Molecular Simulation – From Algorithms to Applications (Academic Press, New York, 2002).
25. S.S. Xantheas and J.C. Werhahn, J. Chem. Phys. 141, 064117 (2014).   CrossRef   PubMed