• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 12, p.1061-1072
https://doi.org/10.15407/ujpe61.12.1061    Paper

Dotsenko I.S., Korobka P.S.

Taras Shevchenko National University of Kyiv
(4, Prosp. Academician Glushkov, Kyiv 03127, Ukraine; e-mail: ivando@ukr.net)

Detection of the Entangle-ment in Many-Qubit Quantum Systems on the Basis of the Mermin and Ardehali Criteria

Section: Plasmas and Gases
Original Author's Text:  Ukrainian

Abstract: A possibility to reveal the entanglement in generalized n-qubit two-parameter GHZ states, as well as in any n-qubit states, with the help of the Mermin and Ardehali inequalities from the collection generally called the Mermin–Ardehali–Belinskii–Klyshko inequalities has been studied. Formulas for the calculation of the Mermin and Ardehali correlation functions in any quantum n-qubit states are derived, and criteria of the violation of corresponding inequalities by specific states are obtained. A set of states that are absolutely insensitive to the Mermin and Ardehali operators is revealed. Modified Mermin and Ardehali operators are proposed, the set of which makes it possible to extend the class of n-qubit states, in which quantum correlations can be revealed.

Key words:  quantum entanglement, entanglement criteria.

References:

  1. G. Gour, N.R. Wallach. The resource theory of quantum reference frames: Manipulations and monotones. New J. Phys. 13, 073013 (2011).   https://doi.org/10.1088/1367-2630/13/7/073013
  2. M. Walter, B. Doran, D. Gross, M. Christandl. Entanglement polytopes: Multiparticle entanglement from single-particle information. Science 340, 1205 (2013).   https://doi.org/10.1126/science.1232957
  3. W. D?ur, H.J. Briegel, J.I. Cirac, P. Zoller. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).   https://doi.org/10.1103/PhysRevA.62.062314
  4. G. Gour, N.R. Wallach. All maximally entangled fourqubit states. J. Meth. Phys. (N.Y.) 51, 112201 (2010).   https://doi.org/10.1063/1.3511477
  5. G. Gour, N.R. Wallach. Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2013).   https://doi.org/10.1103/PhysRevLett.111.060502
  6. N. Gisin. Bell's inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991).   https://doi.org/10.1016/0375-9601(91)90805-I
  7. N. Gisin, A. Peres. Maximal violation of Bell's inequality for arbitrarily large spin. Phys. Lett. A 162, 15 (1992).   https://doi.org/10.1016/0375-9601(92)90949-M
  8. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).   https://doi.org/10.1103/PhysRevLett.23.880
  9. Jing-Ling Chen, Chunfeng Wu, L.C. Kwek, C.H. Oh. Gisin's theorem for three qubits. Phys. Rev. Lett. 93, 140407 (2004).   https://doi.org/10.1103/PhysRevLett.93.140407
  10. N.D. Mermin. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990).   https://doi.org/10.1103/PhysRevLett.65.1838
  11. M. Ardehali. Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375 (1992).   https://doi.org/10.1103/PhysRevA.46.5375
  12. A.V. Belinskii, D.N. Klyshko. Interference of light and Bell's theorem. Phys. Usp. 36, 653 (1993).   https://doi.org/10.1070/PU1993v036n08ABEH002299
  13. D.M. Greenberger, M. Horne, A. Shimony, A. Zeilenger. Bell's theorem without inequalities. Am. J. Phys. 58, 1131 (1990).   https://doi.org/10.1119/1.16243
  14. V. Scarani, N. Gisin. Spectral decomposition of Bell's operators for qubits. J. Phys. A 34 6043 (2011).   https://doi.org/10.1088/0305-4470/34/30/314