• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 12, p.1053-1060
https://doi.org/10.15407/ujpe61.12.1053    Paper

Venger E.F.1, Melnichuk L.Yu.2, Melnichuk A.V.2, Semikina T.V.1

1 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave., Kyiv 03028, Ukraine)
2 Mykola Gogol State University of Nizhyn
(2, Kropyv’yans’ka Str., Nizhyn 16600, Ukraine; e-mail: mov310@mail.ru)

IR Spectroscopic Study of Thin ZnO Films Grown Using the Atomic Layer Deposition Method

Section: Plasmas and Gases
Original Author's Text:  Ukrainian

Abstract: Using the IR reflection method and the modified method of disturbed total internal reflection (DTIR), thin undoped conducting ZnO films grown with the use of the atomic layer deposition method have been studied theoretically and experimentally for the first time in a spectral interval of 400–1400 cm–1. The parameters of ZnO films determined from the IR reflection spectra testify to the presence of frequency “windows” in the DTIR spectra, in which surface phonon and plasmon-phonon polaritons are excited. The theoretical calculations are in good agreement with the experimental results. The dispersion dependences of high- and low-frequency branches of DTIR spectra are plotted and analyzed.

Key words: disturbed total internal reflection, undoped conducting ZnO films, surface plasmon-phonon polaritons.

References:

  1. T.V. Semikina, V.N. Komashchenko, L.N. Shmyreva. Oxide electronics as one of transparent electronics directions. Elektron. Svyaz Elektron. Nanotekhnol. 3, 20 (2010) (in Russian).
  2. S. Gieraltowska, L. Wachinski, B.S. Witkowski, M. Godlewski, E. Guziewicz. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films 520, 4694 (2012).   https://doi.org/10.1016/j.tsf.2011.10.151
  3. T.V. Semikina, S.V. Mamykin, M. Godlewski, G. Luka, R. Pietruszka, K. Kopalko, T.A. Krajewski, S. Giera ltowska, L. Wachnicki, and L.N. Shmyryeva. ZnO as a conductive layer prepared by ALD for solar cells based on nCdS/n-CdTe/p-Cu1.8S heterostructure. Semicond. Phys. Quant. Electron. Optoelectron. 16 (2), 111 (2013).   https://doi.org/10.15407/spqeo16.02.111
  4. S. Sadofev, S. Kalusniak, P. Schofer, and F. Henneberger. Molecular beam epitaxy of n-Zn(Mg)O as a lowdamping plasmonic material at telecommunication wavelengths. Appl. Phys. Lett. 102, 181905 (2013).   https://doi.org/10.1063/1.4804366
  5. G.V. Naik, J. Kim, and A. Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1 (6), 1090 (2011).   https://doi.org/10.1364/OME.1.001090
  6. W. Allen, M.S. Allen, D.C. Look, B.R. Wenner, N. Itagaki, K. Matsushima, I. Surhariadi. Infrared plasmonics via ZnO. J. Nano Res. 28, 109 (2014).   https://doi.org/10.4028/www.scientific.net/JNanoR.28.109
  7. M.A. Bodea, G. Sbarcea, G.V. Naik, A. Boltasseva, T.A. Klar, J.D. Pedarnig. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition. Appl. Phys. A 110, 929 (2013).   https://doi.org/10.1007/s00339-012-7198-6
  8. D.C. Look, K.D. Leedy. ZnO plasmonics for telecommunications. Appl. Phys. Lett. 102, 182107 (2013).   https://doi.org/10.1063/1.4804984
  9. T.V. Semikina. Atomic layer deposition as a nanotechnological method for functional materials. Review. Sci. Notes Taurida Nat. Univ. Ser. Phys. 22 (61), No. 1, 116 (2009) (in Russian).
  10. A. W’ojcik, M. Godlewski, E. Guzievicz, R. Minikaev, W. Paszkovicz. Controlling of preferential growth mode of ZnO thin films grown by atomic layer deposition. J. Cryst. Growth 310, 284 (2008).   https://doi.org/10.1016/j.jcrysgro.2007.10.010
  11. T. Krajewski, E. Guzievicz, M. Godlewski, L. Wachicki, I.A. Kowalik, A. Wojcik-Glodowska, M. Lukasiewicz, K. Kopalko, V. Osinniy, M. Guziewicz. The influence of growth temperature and precursors' doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectr. J. 40, 293 (2009).   https://doi.org/10.1016/j.mejo.2008.07.053
  12. E. Prze’zdziecka, L. Wachnicki, W. Paszkowicz, E. Lusakowska, T. Krajewski, G. Luka, E. Guziewicz, M. Godlewski. Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature. Semicond. Sci. Technol. 24, 105014 (2009).   https://doi.org/10.1088/0268-1242/24/10/105014
  13. E.F. Venger, O.V. Melnichuk, Yu.A. Pasichnyk. Spectroscopy of Residual Rays (Naukova Dumka, 2001) (in Ukrainian).
  14. E.F. Venger, A.V. Melnichuk, L.Ju. Melnichuk, Ju.A. Pasechnik. Anisotropy of the ZnO single crystal reflectivity in the region of residual rays. Phys. Status Solidi (b) 188 (2), 823 (1995).   https://doi.org/10.1002/pssb.2221880226
  15. I.P. Kuzmina, V.A. Nikitenko. Zinc Oxide. Preparation and Optical Properties (Nauka, 1984) (in Russian).
  16. H. Ham, G. Shen, J.H. Cho, T.J. Lee, S.H. Seo, Ch.J. Lee. Vertically aligned ZnO nanowires produced by a catalystfree thermal evaporation method and their field emission properties. Chem. Phys. Lett. 404, 69 (2005).   https://doi.org/10.1016/j.cplett.2005.01.084
  17. E.A. Vinogradov, I.A. Dorofeev. Thermally Induced Electromagnetic Fields of Solids (Fizmatlit, 2010) (in Russian).
  18. E.F. Venger, L.Yu. Melnichuk, O.V. Melnichuk, T.V. Semikina, Yu.I. Khrokolova. IR-refection spectroscopic study of thin ZnO films on the SiO2 surface. In Physico-Mathematical Notes: Collection of Scientific Works (Nizhyn State Univ., 2013), p. 59 (in Ukrainian).
  19. E.F. Venger, D.V. Korbutyak, L.Yu. Melnichuk, O.V. Melnichuk. Research of films of ZnO on the substrate with optical of flew down the method IR-spectroscopy of reflection. Trans. Iakob Gogebashvili Telavi State Univ. 1 (27), 64 (2014).
  20. E.F. Venger, A.V. Melnichuk, Yu.A. Pasechnik, E.I. Sukhenko. Surface polaritons in the system ZnO on sapphire. Optoelektron. Poluprovodn. Tekhn. 31, 120 (1996) (in Russian).