• Українська
  • English

< Prev | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 12, p.1033-1047
https://doi.org/10.15407/ujpe61.12.1033    Paper

Chudak N.O.1, Merkotan K.K.1, Ptashynskyy D.A.1, Potiyenko O.S.1, Deliyergiyev M.A.2, Tykhonov A.V.3, Sokhrannyi G.O.4, Zharova O.V.5, Berezovskiy O.D.1, Voytenko V.V.1, Volkotrub Yu.V.1, Sharph I.V.1, Rusov V.D.1

Theoretical and experimental nuclear physics Department,
Odessa National Polytechnic University
(Shevchenko Avenue 1, Odessa 65000; e-mail: sharph@ukr.net)
2 Department of High Energy Nuclear Physics, Institute of Modern Physics
(Nanchang Road 509, 730000 Lanzhou, China)
3 D´epartement de physique nucl´eaire et corpusculaire, Universit´e de Gen´eve
(CH-1211 Geneva 4, Switzerland)
4 Department of Experimental Particle Physics, Joˇzef Stefan Institute
(Jamova 39, SI-1000 Ljubljana, Slovenia)
Chair of Advanced mathematics and modeling systems,
Odessa National Polytechnic University
(Shevchenko Avenue 1, Odessa 65000)

Internal states of hadrons in relativistic reference frame

Section: Nuclei and Nuclear Reactions
Original Author's Text: EnglishUkrainian

Abstract:  We consider the problem of internal particle state transformation, which is a bound state of several constituents, from the particle’s rest frame to the system in which this particle is relativistic. It is assumed that in the rest frame of the composite particle, its internal state can be considered in the nonrelativistic approximation. It is shown, that this internal state is unchanged during the transition from one reference frame to another. Namely, given the particle is spherically symmetric in the rest frame, it remains spherically symmetric in any other reference frame, and does not undergo Lorentz contraction along the direction of motion of moving reference frame with respect to the rest frame. We discuss a possible application of these results to the description of hadron-hadron scattering, considering hadrons as a bound states of quarks.

Key words: 

References:

  1. I.V. Sharf, A.V. Tikhonov, G.O. Sokhrannyi, K.V. Yatkin, M.A. Deliyergiev et al. Description of hadron inelastic scattering by the Laplace method and new mechanisms of cross-section growth. Ukr. Fiz. Zh. 56, 1151 (2011).
  2. I. Sharph, A. Tykhonov, G. Sokhrannyi, M. Deliyergiyev, N. Podolyan et al. On the role of longitudinal momenta in high energy hadron-hadron scattering. Central Eur. J. Phys. 10, 858 (2012).   https://doi.org/10.2478/s11534-012-0056-5
  3. I.V. Sharph et al. The new method of interference contributions accounting for inelastic scattering diagrams. arXiv: 1509.04329 (2015).
  4. I.V. Sharf, K.K. Merkotan, N.A. Podolyan, D.A. Ptashynskyy, A.V. Tykhonov et al. Gluon loops in the inelastic processes in QCD. arXiv:1210.3490 (2012).
  5. Yu.V. Volkotrub et al. Multiparticle field operators in quantum field theory. arXiv:1510.01937 (2015).
  6. N. Chudak, M. Deliyergiyev, K. Merkotan, O. Potiyenko, D. Ptashynskyi, Y. Shabatura, G. Sokhrannyi, A. Tykhonov, Y. Volkotrub, I. Sharph, V. Rusov. Multiparticle quantum fields. Phys. J. 2, 181 (2016) http://www.aiscience.org/journal/pj.
  7. R.P. Feynman. Photon-Hadron Interactions (Benjamin, 1972).
  8. M. Diehl, D. Ostermeier, A. Schafer. Elements of a theory for multiparton interactions in QCD. J. High Energy Phys. 1203, 089 (2012).
  9. M. Strikman. Transverse structure of the nucleon and multiparton interactions. Prog. Theor. Phys. Suppl. 187, 289 (2011).   https://doi.org/10.1143/PTPS.187.289
  10. A.P. Kobushkin, V.P. Shelest. Relativistic equations for bound quark systems. Teor. Mat. Fiz. 31, 156 (1977).   https://doi.org/10.1007/BF01036667
  11. R.N Faustov. Relativistic wavefunction and form factors of the bound system. Ann. Phys. 78, 176 (1973).   https://doi.org/10.1016/0003-4916(73)90007-9
  12. E.E. Salpeter, H.A. Bethe. A Relativistic equation for bound state problems. Phys. Rev. 84, 1232 (1951).   https://doi.org/10.1103/PhysRev.84.1232
  13. A.A. Logunov, A.N. Tavkhelidze. Quasi-optical approach in quantum field theory. Nuovo Cimento 29, 380 (1963).   https://doi.org/10.1007/BF02750359
  14. S.J. Brodsky, H.-C. Pauli, S.S. Pinsky. Quantum chromodynamics and other field theories on the light cone. Phys. Rept. 301, 299 (1998).   https://doi.org/10.1016/S0370-1573(97)00089-6
  15. T. Heinzl. Light Cone Dynamics of Particles and Fields. PhD thesis (Regensburg Univ., 1998) [http://alice.cern.ch/format/showfull?sysnb=0300475].
  16. M.V. Terent'ev. On the structure of wave functions of mesons as bound quark states. Yad. Fiz. 24, 207 (1976).
  17. P.A.M. Dirac. Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949).   https://doi.org/10.1103/RevModPhys.21.392
  18. N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Fields (Wiley, 1980).
  19. F.A. Berezin. The Method of Second Quantization (Academic Prfess, 1966).
  20. M.A. Deliyergiyev, A.G. Kotanzhyan, K.K. Merkotan, N.O. Podolian, O.S. Potiyenko et al. Transformation of the nonrelativistic quantum system under transition from one inertial reference frame to another. arXiv:1307.2280v5 (2013).
  21. I.M. Gelfand, G.E. Shilov Generalized Functions (Academic Press, 1964–1968).
  22. V.A. Karmanov. Relativistic composite systems in the light front dynamics. Fiz. Elem. Chast. At. Yadra 19, 525 (1988) (in Russian).
  23. L.H. Ryder, Quantum Field Theory (Cambridge Univ. Press, 1985).
  24. Xiangdong Ji. Generalized parton distributions. Ann. Rev. Nucl. Part. Sci. 54, 413 (2004).   https://doi.org/10.1146/annurev.nucl.54.070103.181302
  25. . C. Alexandrou, C.N. Papanicolas, M. Vanderhaeghen. Colloquium: The shape of hadrons. Rev. Mod. Phys. 84, 1231 (2012).   https://doi.org/10.1103/RevModPhys.84.1231
  26. I.M. Dremin. Elastic scattering of hadrons. Usp. Fiz. Nauk 183, 3 (2013).   https://doi.org/10.3367/UFNr.0183.201301a.0003
  27. R. Conceicao, J. Dias de Deus, M. Pimenta. Proton–proton cross-sections: The interplay between density and radius. Nucl. Phys. A 888, 58 (2012).   https://doi.org/10.1016/j.nuclphysa.2012.02.019
  28. I.V. Sharph et al. The state of nonrelativistic quantum system in a relativistic reference frame. arXiv:1403.3114 [hep-ph] (2014).
  29. A.A. Duviryak. Application of two-particle Dirac equation in meson spectroscopy. Zh. Fiz. Dosl. 10, 290 (2006).