• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 11, p. 987- 991
https://doi.org/10.15407/ujpe61.11.0987    Paper

Rasulov V.R.

Ferghana State University, Chair of Physics
(19, Murabbiylar Str., Ferghana 150100, Uzbekistan; e-mail: r_rasulov51@mail.ru)

Polarization-Dependent Photocurrent in p-GaAs

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: An expression for the spectral and temperature dependences of a photocurrent arising as a result of the linear photovoltaic effect in such semiconductors as gallium arsenide with the hole conduction has been derived. The photocurrent is shown to arise owing to the presence of terms with different parities in the effective hole Hamiltonian. Theoretical and experimental results have been compared.

Key words: photovoltaic effect, semiconductor, polarization, photocurrent, Hamiltonian, momentum operator, energy spectrum, light absorption coefficient.


  1. E.L. Ivchenko, G.E. Pikus. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer, 1997) [ISBN: 978-3-642-64493-1 (Print) 978-3-642-60650-2 (Online)].
  2. V.I. Belinicher, E.L. Ivchenko, B.I. Sturman. Kinetic theory of the shift photogalvanic effect in piezoelectrics. Zh. Eksp. Teor. Fiz. ` 83, 649 (1982).
  3. E.L. Ivchenko, G.E. Pikus. In Problems of Modern Physics (Nauka, 1990) (in Russian).
  4. . B.I. Sturman, V.M. Fridkin. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, 1992).
  5. R.Ya. Rasulov, Yu.E. Salenko, D. Kambarov. Linear photovoltaic effect in gyrotropic crystals. Semiconductors 36, 141 (2002).
  6. J.M. Doviak, S.Kothari. In Proceedings of the 12th International Conference on the Physics of Semiconductors (Stutgart, 1974).
  7. . K.H. Hermann, D. Vogel. In Proceedings of the 11th International Conference on the Physics of Semiconductors (Warsaw, 1972).
  8. A.F. Gibson, C.B. Hatch, M.F. Kimmitt, S. Kothari, A. Serafetinides. Optical rectification and photon drag in n-type gallium phosphide. J. Phys. C: Solid State Phys. 10, 905 (1977).
  9. V.I. Belincher, B.I. Sturman. The photogalvanic effect in media lacking a center of symmetry. Sov. Phys. Usp. 23, 199 (1980).
  10. E.L. Ivchenko, G.E. Pikus, R.Ya. Rasulov. Linear photogalvanic effect in p-type A3B5 semiconductor. Shift contribution. Fiz. Tverd. Tela 26 (11), 3362 (1984).
  11. R.Ya. Rasulov, U. Ganiev, Kh.A. Sidikova. The theory of photogalvanic effects in crystals with complex band structure at the two-photon light absorption. Fiz. Tekh. Poluprovodn. 27, 635 (1993).
  12. A.V. Andrianov, E.L. Ivchenko, G.E. Pikus, R.Ya. Rasulov. Linear photogalvanic effect in hole gallium arsenide. Zh. Eksp. Teor. Fiz. ` 81, 2080 (1981).
  13. G.L. Bir, G.E. Pikus. Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).
  14. E.L. Ivchenko, R.Ya. Rasulov. Symmetry and the Real Band Structure of Semiconductors (Fan, 1989) (in Russian).
  15. L.E. Vorob'ev, S.N. Danilov, E.L. Ivchenko, M.E. Levinshtein, D.A. Firsov, V.A. Shalygin. Kinetic and Optical Phenomena in Strong Electric Fields in Semiconductors and Nanostructures (Nauka, 2000) (in Russian).
  16. L.E. Vorob'ev, E.L. Ivchenko, D.A. Firsov, V.A. Shalygin. Optical Properties of Nanostructures (Nauka, 2001) (in Russian).
  17. E.L.Ivchenko, S.D. Ganichev. Spin Photogalvanics in Spin Physics in Semiconductors (Springer, 2008).
  18. E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures (Alpha Sci. Intern., 2005).