• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 11, p.980-986
https://doi.org/10.15407/ujpe61.11.0980    Paper

Voitovych V.V.1, Rudenko R.M.1, Yuchymchuk V.O.2, Voitovych M.V.2, Krasko M.M.1, Kolosiuk A.G.1, Povarchuk V.Yu.1, Khachevich I.M.2, Rudenko M.P. 3

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Prosp., Kyiv 03680, Ukraine; e-mail: vvoitovych@yahoo.com)
2 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Nauky Prosp., Kyiv 03028, Ukraine)
3 Mykola Gogol State University of Nizhyn
(2, Krapyv’yanska Str., Nizhyn 16600, Ukraine)

Effect of Tin on Structural Transformations in the Thin-Film Silicon Suboxide Matrix

Section: Solid Matter
Original Author's Text:  Ukrainian

Abstract: The processes of crystallization of amorphous silicon (a-Si) in the a-SiOxSn (1 ≤x≤ 2) suboxide matrix have been studied. The temperature, at which the crystallization begins, is shown to be lower for a-SiOxSn films with higher tin contents. For specimens with the maximum tin content (about 2 vol.%), the crystallization begins at a temperature of 500 °C; for specimens with the average tin content (about 1 vol.%), the crystallization temperature equals 800 °C; and for specimens with the minimum tin content (about 0.5 vol.%), the crystallization of a-Si starts at 1000 °C. On the other hand, it is shown that tin does not influence the separation of a-Si and the SiO2 phase in the examined specimens. It is found theoretically that silicon crystallites that are formed during the crystallization of a-Si are much smaller (d ≈ 5÷7 nm) in a-SiOxSn films with a high tin content (1 and 2 vol.%) in comparison with the tin-free specimens (d ≥ 10 nm). A metal-induced mechanism of crystallization of a-Si has been proposed, which predicts the existence of tin metal clusters in SiOx that create conditions for the easier transition of the amorphous silicon phase into the crystalline one. On the basis of experimental data, it is supposed that, in our case, a necessary condition for the crystallization of a-Si by the proposed metal-induced mechanism to start is the presence of metal (tin) aggregates in SiOx.

Key words: crystallization, amorphous silicon, tin, nano-sized silicon crystallites.

References:

  1. L.T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046 (1990).
     https://doi.org/10.1063/1.103561
  2. G. Franzo, A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, F. Priolo. Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A 74, 1 (2002).
     https://doi.org/10.1007/s003390101019
  3. M.E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, C. Bongiorno. Si-based materials and devices for light emission in silicon. Physica E 16, 547 (2003).
     https://doi.org/10.1016/S1386-9477(02)00644-6
  4. I.P. Lisovskyy, I.Z. Indutnyy, V.G. Litovchenko, B.M. Gnennyy, P.M. Lytvyn, D.O. Mazunov, O.S. Oberemok, N.V. Sopinskyy, P.E. Shepeliavyi. Thermostimulated structural transformations in vacuum-evaporated SiO films. Ukr. J. Phys. 48(3), 250 (2003).
  5. A. Szekeres, T. Nikolova, A. Paneva et al. Silicon nanoparticles in thermally annealed thin silicon monoxide films. Mater. Sci. Eng. B 124–125, 504 (2005).
     https://doi.org/10.1016/j.mseb.2005.08.124
  6. S. Hayashi, T. Nagareda, Y. Kanazawa, K. Yamamoto. Photoluminescence of Si-rich SiO2 films: Si clusters as luminescent centers. Jpn. J. Appl. Phys. 32, 3840 (1993).
     https://doi.org/10.1143/JJAP.32.3840
  7. M. Zacharias, J. Heitmann, R. Scholz et al. Size–controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661 (2002).
     https://doi.org/10.1063/1.1433906
  8. V.V. Voitovich, V.B. Neimash, N.N.Krasko et al. Influence of Sn impurity on optical and structural properties of thin silicon films. Fiz. Tekh. Poluprovodn. 45, 1331 (2011).
  9. R.M. Rudenko, V.V. Voitovych, N.N. Krasko et al. Influence of high-temperature annealing on the structure and the intrinsic absorption edge of thin-film silicon doped with tin. Ukr. Fiz. Zh. 58, 770 (2013).
  10. R.M. Rudenko, M.M. Krasko, V.V. Voitovych et al. Behavior of hydrogen during crystallization of thin silicon films doped with tin. Ukr. Fiz. Zh. 58, 1166 (2013).
  11. V.V. Voitovich, R.N. Rudenko, A.G. Kolosyuk et al. Influence of tin on the processes of silicon nano-crystal formation in thin films of amorphous matrix SiO. Fiz. Tekh. Poluprovodn. 48, 77 (2014).
  12. A.A. Sirenko, J.R. Fox, L.A. Akimov, X.X. Xi, S. Ruvimov, Z. Liliental-Weber. In situ Raman scattering studies of the amorphous and crystalline Si nanoparticles. Solid State Commun. 113, 553 (2000).
     https://doi.org/10.1016/S0038-1098(99)00539-6
  13. H. Richter, Z.P. Wang, L. Ley. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981).
     https://doi.org/10.1016/0038-1098(81)90337-9
  14. H. Campbell, P.M. Fauchet. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58(10), 739 (1986).
     https://doi.org/10.1016/0038-1098(86)90513-2
  15. P. Mishra, K.P. Jain. First- and second-order Raman scattering in nanocrystalline silicon. Phys. Rev. B 64, 073304 (2001).
     https://doi.org/10.1103/PhysRevB.64.073304
  16. I.P. Lisovskyy, M.V. Voitovich, A.V. Sarikov, V.G. Litovchenko, A.B. Romanyuk, V.P. Melnyk, I.M. Khatsevich, P.E. Shepeliavyi. Transformation of the structure of silicon oxide during the formation of Si nanoinclusions under thermal annealings. Ukr. Fiz. Zh. 54, 383 (2009).
  17. M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoch, T. Nozaki. Infrared absorption spectra and composition of evaporated silicon oxides (SiO). Solid State Commun. 50(12), 1079 (1984).
     https://doi.org/10.1016/0038-1098(84)90292-8
  18. V.N. Seminogov, V.I. Sokolov, V.N. Glebov et al. Percolation analysis of structural transformations and the formation of silicon nanoclusters at thermal annealing of SiO films. Perspekt. Mater. 8, 159 (2010).
  19. A.L. Shabalov, M.S. Feldman, M.Z. Bashirov. Vibrational spectra and structure of thin SiO films. Izv. Akad. Nauk SSSR Ser. Fiz. Tekh. Mat. Nauk 3, 78 (1986).
  20. A.P. Kucherov, S.M. Kochubei. Method for the resolition of a complicated contour into elementary components making use of the preliminary analysis of its structure. Zh. Prikl. Spektrosk. 38, 145 (1983).
  21. I.W. Boyd, J.I.B. Wilson. Silicon–silicon dioxide interface: An infrared study. J. Appl. Phys. 62, 3195 (1987).
     https://doi.org/10.1063/1.339320
  22. H.R. Philipp. Optical properties of non–crystalline Si, SiO, SiO and SiO2. J. Phys. Chem. Solids 32, 1935 (1971).
     https://doi.org/10.1016/S0022-3697(71)80159-2
  23. I.P. Lisovskii. Dr. Sci. thesis Structural Transformations in Near-Surface Layers of Silicon and Silicon-Oxygen Phases (Kiev, 1998) (in Russian).
  24. B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer, 1984).
     https://doi.org/10.1007/978-3-662-02403-4
  25. V.G. Golubev, V.Yu. Davydov, A.V. Medvedev, A.B. Pevtsov, N.A. Feoktistov. Raman scattering spectra and electric conductivity of thin silicon films with mixed amorphous–crystalline composition: determination of the volume fraction of nanocrystalline phase. Fiz. Tverd. Tela 39, 1348 (1997).
  26. O. Nast, S.R. Wenham. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J. Appl. Phys. 88, 124 (2000).
     https://doi.org/10.1063/1.373632
  27. A. Sarikov. Metal induced crystallization mechanism of the metal catalyzed growth of silicon wire-like crystals. Appl. Phys. Lett. 99, 143102 (2011).
     https://doi.org/10.1063/1.3644981
  28. . O. Nast, T. Puzzer, L.M. Koschier. Aluminium-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. Appl. Phys. Lett. 73, 3214 (1998).
     https://doi.org/10.1063/1.122722
  29. V. Neimash, V. Poroshin, P. Shepeliavyi et al. Tin Induced a-Si Crystallization in Thin Films of Si-Sn Alloys. J. Appl. Phys. 114, 213104 (2013).
     https://doi.org/10.1063/1.4837661