• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 11, p.973- 979
https://doi.org/10.15407/ujpe61.11.0973    Paper

Romanyuk B.1, Melnik V.1, Popov V.1, Korotchenkov O.2

1 Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: romb@isp.kiev.ua)
2 Faculty of Physics, Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

Stationary Multistar-Shape Patterns of Water Drops in the Presence of a Temperature Gradient

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract:  The evolution of a shape of liquid drops placed onto superheated surfaces has been of interest for several decades, since it is related to various phenomena ranging from atomic nuclear fission to planetary rotation and occurs in numerous industrial processes. We show that a drop locked in a spherical crevice displays multistar-shape patterns with unusually large number of stars n, which can be as high as eleven. The data are interpreted in terms of multiplicative shape disturbances of the drop, which are created by continuously repetitive gas overheats and vapor breakups. This process accompanied by pulsating motions of the drop ends up in a stationary n-star configuration. We also report on the freezing-like behavior of the drop evaporating in a sequence of freezing states. This discovery can be applied to the control over liquid-gas phase transitions at superheated surfaces and can be used for measuring the viscosity and the concentration of particles in suspensions.

Key words: liquid drop, superheated surface, levitation, star configuration.


  1. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley. Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).
  2. D.E. Sullivan, M.M. T. da Gama. in Fluid Interfacial Phenomena, edited by C.A. Croxton (Wiley, 1986), p. 45.
  3. S. Chandrasekhar. The stability of a rotating liquid drop. Proc. R. Soc. London A 286, 1 (1965).
  4. R.A. Brown, L.E. Scriven. The shape and stability of rotating liquid drops. Proc. R. Soc. London A 371, 331 (1980).
  5. K. Ohsaka, E.H. Trinh. Three-lobed shape bifurcation of rotating liquid drops. Phys. Rev. Lett. 84, 1700 (2000).
  6. T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse. Drop impact on superheated surfaces. Phys. Rev. Lett. 108, 036101 (2012).
  7. I.U. Vakarelski, N.A. Patankar, J.O. Marston, D.Y.C. Chan, S.T. Thoroddsen. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature (London) 489, 274 (2012).
  8. D.Qu’er’e. Leidenfrost dynamics. Ann. Rev. Fluid Mech. 45, 197 (2013).
  9. A.-L. Biance, C. Clanet, D. Qu’er’e. Leidenfrost drops. Phys. Fluids 15, 1632 (2003).
  10. J.D. Bernardin, I. Mudawar. The Leidenfrost point: Experimental study and assessment of existing models. J. Heat Transfer 121, 894 (1999).
  11. I.U. Vakarelski, J.O. Marston, D.Y.C. Chan, S.T. Thoroddsen. Drag reduction by Leidenfrost vapor layers. Phys. Rev. Lett. 106, 214501 (2011).
  12. T.G. Wang, E.H. Trinh, A.P. Croonquist, D.D. Elleman. Shapes of rotating free drops: Spacelab experimental results. Phys. Rev. Lett. 56, 452 (1986).
  13. D.E. Strier, A.A. Duarte, H. Ferrari, G.B. Mindlin. Nitrogen stars: Morphogenesis of a liquid drop. Physica A 283, 261 (2000).
  14. S.S. Iqbal, M.W. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, J.P. Chambers. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15, 549 (2000).
  15. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14, 599 (1999).
  16. J.J. Hawkes, W.T. Coakley. Force field particle filter, combining ultrasound standing waves and laminar flow. Sens. Actuators B 75, 213 (2001).
  17. D.D. Joseph, J. Belanger, G.S. Beavers. Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiphase Flow 25, 1263 (1999).
  18. J. Swift, P.C. Hohenberg. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319 (1977).
  19. M.C. Cross, P.C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).
  20. M. Iba?nes, J. Garc’ia-Ojalvo, R. Toral, J.M. Sancho. Noise-induced scenario for inverted phase diagrams. Phys. Rev. Lett. 87, 020601 (2001).
  21. J. Buceta, K. Lindenberg. Comprehensive study of phase transitions in relaxational systems with field-dependent coefficients. Phys. Rev. E 69, 011102 (2004).