• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 11, p.960-967
https://doi.org/10.15407/ujpe61.11.0960    Paper

Solomenko O.V.1, Prysiazhna O.V.2, Chernyak V.Ya.2, Lendiel V.V.2, Hamazin D.K.2, Martysh Eu.V.1, Kalustova D.O.1

1 Taras Shevchenko National University of Kyiv,
Faculty of Radio Physics, Electronics, and Computer Systems
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: oksana_solomenko@ukr.net)
2 Taras Shevchenko National University of Kyiv,
Faculty of Radiophysics, Electronics, and Computer Systems
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

Prysiazhnevych I.V. Investigation of a Microdischarge System with the Vortex Gas Supply

Section: Plasmas and Gases
Original Author's Text: English

Abstract: A microdischarge system has been studied with the use of various plasma gases. The results of emission spectroscopy and measurements of the current-voltage characteristics are reported. The discharge parameters for the vibrational and rotational levels of plasma components are determined.

Key words: microdischarge, vortex flow, optical emission spectroscopy.


  1. K.H. Becker, K.H. Schoenbach, J.G. Eden. Microplasmas and applications. J. Phys. D: Appl. Phys. 39, R55 (2006).
  2. S.H. Nam, H.W. Lee, S.H. Cho et al. High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide. J. Appl. Oral Sci.: Revista FOB 21(3), 265 (2013).
  3. A.C. Ritts, H. Li, Q. Yu et al. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 118(5), 510 (2010).
  4. G.C. Kim, H.W. Lee, J.H. Byun et al. Dental applications of low-temperature nonthermal plasmas. Plasma Process Polym. 10, 199 (2013).
  5. Y. Liang, Y. Li, K. Sun et al. Plasma thorns: Atmospheric pressure non-thermal plasma source for dentistry applications. Plasma Process Polym. 12, 1069 (2015).
  6. J. Mizeraczyk, M. Dors, M. Jasi’nski et al. Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms. Eur. Phys. J. Appl. Phys. 61, 24309 (2013).
  7. H.S. Uhm, E.H. Choi, G.S. Cho. Sterilization of microbes by using various plasma jets. J. Korean Phys. Soc. 60, 897 (2012).
  8. A.A. Fridman, G. Friedman. Plasma Medicine (Wiley, 2013).
  9. R.F. Caetano, Y.D.U. Hoyer, C. Oliveira et al. Study of microhollow cathode glow discharge to improve the wettability on surface of polypropylene film. Am. J. Cond. Matter Phys. 4(3A), 32 (2014).
  10. A. Agilar, PhD thesis (2009).
  11. T. Nozaki, K. Okazaki. Plasma enhanced C1-chemistry: towards greener methane conversion. Green Process Synth. 1), 517 (2012).
  12. J.A. Daseco, K.G. Pabeli?na, Ma.A.T. Siringan et al. Comparative study on the use of different metal electrodes in low-pressure glow discharge plasma sterilization. Plasma Medicine 4, 1 (2014).
  13. N.Y. Babaeva, M.J. Kushner. Intracellular electric fields produced by dielectric barrier discharge treatment of skin. J. Phys. D: Appl. Phys. 43, 185206 (2010).
  14. N.Yu. Babaeva, M.J. Kushner. Reactive fluxes from atmospheric pressure plasmas for deactivation of bacteria on rough surfaces and suspended in air. Proc. 20th Int. Symp. Plasma Chemistry (2011).
  15. C.O. Laux. Radiation and Nonequilibrium Collisional Radiative Models. In Physico-Chemical Models for High Enthalpy and Plasma Flows (von Karman Institute for Fluid Dynamics, 2002).
  16. . V.I. Arkhipenko, A.A. Kirilov, Y.A. Safronau et al. DC atmospheric pressure glow microdischarges in the current range from microamps up to amperes. Eur. Phys. J. D 60, 455 (2010).
  17. V.N. Ochkin. Spectroscopy of Low Temperature Plasma (Fizmatlit, 2010) [in Russian].