• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 11, p.1008-1016
https://doi.org/10.15407/ujpe61.11.1008    Paper

Tonkoshkur A.S., Lyashkov A.Yu., Degtyaryov A.V.

Oles Honchar National University of Dnipropetrovsk, Chair od Radioelectronics
(72, Gagarin Ave., Dnipropetrovsk 49050, Ukraine; e-mail: vdnu@yandex.ua)

Size Effects in Electrical Properties of Carbon-Polypropylene Composites

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: The temperature dependences of the resistance, current-voltage characteristics, and dielectric spectra of composites based on polypropylene and fillers made of micro- and nano-sized carbon particles have been studied. A reduction in the average size of conducting filler particles is found to decrease the resistivity magnitude, to shift the posistor section in the current-voltage characteristics toward lower electric fields and larger currents, and to increase the low-frequency dielectric permittivity of the researched composites. It is shown that these “size”effects can be explained by a growth of the effective fraction of the volume occupied by the conducting filler owing to the emergence of interfacial boundary layers in the polypropylene matrix. The electric properties of the layers differ from those for bulk polyethylene, and charge carriers can move in them. In other words, a change in the size of carbon particles gives rise to changes in the specific area and the effective fraction of the conducting filler.

Key words: composite, carbon filler, conductivity, dielectric permittivity, interphase layer.

References:

  1. R. L?ohnert, H. Bartsch, R. Schmidt, B. Capraro, J. T?opfer. Microstructure and electric properties of CaCu3Ti4O12 multilayer capacitors. J. Am. Ceram. Soc. 98, 141 (2015).
     https://doi.org/10.1111/jace.13260
  2. H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, B. Xu. MnO2-modified 0.98 (K0.5Na0.5)NbO3–0.02 LaFeO3 ceramics with low dielectric loss for high temperature ceramics capacitors applications. Ceram. Int. 40, 5019 (2014).
     https://doi.org/10.1016/j.ceramint.2013.08.095
  3. T.K. Gupta. Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817 (1990).
     https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  4. D.R. Clarke. Varistor ceramics. J. Am. Ceram. Soc. 82, 485 (1999).
     https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  5. A. Glot, G. Behr, Werner. Current limiting effect in In2O3 ceramics based structures. Key Eng. Mater. 206, 1441 (2002).
     https://doi.org/10.4028/www.scientific.net/KEM.206-213.1441
  6. A. Bondarchuk, A. Glot, G. Behr, J. Werner. Current saturation in indium oxide based ceramics. Eur. Phys. J. Appl. Phys. 39, 211 (2007).
     https://doi.org/10.1051/epjap:2007112
  7. A.B. Glot, S.V. Mazurik, B.J. Jones, A.N. Bondarchuk, R. Bulpett, N. Verma. Current limiting and negative differential resistance in indium oxide based ceramics. J. Eur. Ceram. Soc. 30, 539 (2010).
     https://doi.org/10.1016/j.jeurceramsoc.2009.06.033
  8. A.B. Glot, S.V. Mazurik. Non-Ohmic conduction in In2O3–Bi2O3 ceramics. Physica B 428, 65 (2013).
     https://doi.org/10.1016/j.physb.2013.07.017
  9. W. Heywang. Amorphe und Polykristalline Halbleiter. (Springer, 1984).
     https://doi.org/10.1007/978-3-642-95447-4
  10. W. Zhang, A.A. Dehghani-Sanij, R.S. Blackburn. Carbon based conductive polymer composites. J. Mater. Sci. 42, 3408 (2007).
     https://doi.org/10.1007/s10853-007-1688-5
  11. A. Rybak, G. Boiteux, F. Melis, G. Seytre. Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos. Sci. Technol. 70, 410 (2010).
     https://doi.org/10.1016/j.compscitech.2009.11.019
  12. J. Aneli, G. Zaikov, O. Mukbaniani, Physical principles of the conductivity of electrically conductive polymer composites (Review). Mol. Cryst. Liq. Cryst. 554, 167 (2012).
     https://doi.org/10.1080/15421406.2012.633866
  13. Y. Liu, S. Kumar. Polymer/carbon nanotube nano composite fibers – A review. ACS Appl. Mater. Interfaces 6, 6069 (2014).
     https://doi.org/10.1021/am405136s
  14. A.B. Glot, A.M. Makeev. Non-linear electrical characteristics of composite layers conductor-dielectric. Phys. Chem. Solid State 2, 375 (2001).
  15. I.A. Morozov, A.L. Svistkov, G.B. Heinrich. Structure of the carbon-black-particles framework in filled elastomer materials. Polym. Sci. Ser. A 49, 292 (2007).
     https://doi.org/10.1134/S0965545X07030091
  16. A. Montazeri, R. Naghdabadi. Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling. J. Appl. Polym. Sci. 117, 361 (2010).
     https://doi.org/10.1002/app.31460
  17. J. Fr?ohlich, W. Niedermeier, H.D. Luginsland. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites Part A: Appl. Sci. Manufact. 36, 449. (2005).
     https://doi.org/10.1016/j.compositesa.2004.10.004
  18. S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering 39, 933 (2008).
     https://doi.org/10.1016/j.compositesb.2008.01.002
  19. A.N. Rassokha, A.N. Cherkashyna, T.I. Chramova. Influence of the interphase layer origin on the properties of furan-epoxy composites. Integr. Technol. Ener. Conserv. 2, 124 (2011).
  20. K.T. Chung, A. Sabo, A.P. Pica. Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites. J. Appl. Phys. 53, 6867 (1982).
     https://doi.org/10.1063/1.330027
  21. Ye.P. Mamunya, V.V. Davydenko, P. Pissis, and E.V. Lebedev. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 38, 1887 (2002).
     https://doi.org/10.1016/S0014-3057(02)00064-2
  22. L. Cui, Y. Zhang, Y. Zhang, X. Zhang, W. Zhou. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black. Eur. Polym. J. 43, 50976 (2007).
     https://doi.org/10.1016/j.eurpolymj.2007.08.023
  23. W. Bauhofer, J.Z. Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486 (2009).
     https://doi.org/10.1016/j.compscitech.2008.06.018
  24. S.G. Shin. A study on the percolation threshold of polyethylene matrix composites filled carbon powder. Electron. Mater. Lett. 6, 65 (2010).
  25. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi. Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. 33, 2027. (1998).
     https://doi.org/10.1023/A:1004398514901
  26. G.C. Psarras, E. Manolakaki, G.M. Tsangaris. Dielectric dispersion and ac conductivity in – Iron particles loaded –polymer composites. Composites Part A 34, 1187 (2003).
     https://doi.org/10.1016/j.compositesa.2003.08.002
  27. J. Zhang, M. Mine, D. Zhu, M. Matsuo. Electrical and dielectric behaviors and their origins in the threedimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47, 1311 (2009).
     https://doi.org/10.1016/j.carbon.2009.01.014
  28. S.-G. Shin, I.-K. Kwon. Effect of temperature on the dielectric properties of carbon black-filled polyethylene matrix composites below the percolation threshold. Electron. Mater. Lett. 7, 249 (2011).
     https://doi.org/10.1007/s13391-011-0913-1
  29. Y. Dang, Y. Wang, Y. Deng, L.I. Mao, Y. Zhang, Z.W. Zhang. Enhanced dielectric properties of polypropylene based composite using Bi2S3 nanorod filler. Prog. Nat. Sci.: Mater. Int. 21, 216 (2011).
     https://doi.org/10.1016/S1002-0071(12)60033-1
  30. A.S. Tonkoshkur, S.F. Sklyar, E.F. Afonko. Effect of built-in charge on dielectric phenomena in inhomogeneous matrix-type structure. Russ. Phys. J. 31, 108 (1988).
  31. M.C. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, G. Santoro. Surface states and negative electron affinity in polyethylene. Phys. Rev. Lett. 87, 076802 (2001).
     https://doi.org/10.1103/PhysRevLett.87.076802
  32. A.V. Degtyar'ov, A.S. Tonkoshkur, A.Yu. Lyashkov. Electrical properties of posistor composite materials based on polyethylene-graphite. Multidisc. Model. Mater. Struct. 2, 435 (2006).
     https://doi.org/10.1163/157361106778554897
  33. N.A. Drokin, G.A. Kokourov, G.A. Glushchenko, I.V. Osipova, A.N. Maslennikov, G.N. Churilov. Effect of electrode material on impedance spectra of metal-polyethylene structures with carbon nanotubes. Phys. Solid State 54, 844 (2012).
     https://doi.org/10.1134/S1063783412040063
  34. V.R. Kolbunov, A.S. Tonkoshkur, K.V. Antonova. Structure and dielectric properties in the radio frequency range of polymer composites based vanadium dioxide. Tekhnol. Konstruir. Elektr. Apparat. 2-3, 47 (2015).
  35. M.F. Wartenberg, J.G. Lahlouh, J. Toth. Patent US5747147 MKI B32B9/00 Conductive polymer composition and device: No. 19970130; Publ. 05.05.98.
  36. B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors. (Springer, 1984).
     https://doi.org/10.1007/978-3-662-02403-4
  37. P.G. De Gennes. On a relation between percolation theory and the elasticity of gels. J. Phys. Lett. 37, 1 (1976).
     https://doi.org/10.1051/jphyslet:019760037010100
  38. A.K. Jonscher. Admittance spectroscopy of systems showing low-frequency dispersion. Electrochim. Acta 35, 1595 (1990).
     https://doi.org/10.1016/0013-4686(90)80015-G
  39. F. Kremer, A. Sch?onhals. Broadband Dielectric Spectroscopy (Springer, 2003).
     https://doi.org/10.1007/978-3-642-56120-7
  40. S. Wr’obel, B. Gestblom, J. Jad?zyn et al. Dielectric relaxation spectroscopy, in Relaxation Phenomena (Springer, 2003), p. 13.
     https://doi.org/10.1007/978-3-662-09747-2_2
  41. S.S. Dukhin, V.N. Shilov. Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes (Wiley, 1974).
  42. A.S. Tonkoshkur, I.M. Chernenko. Effect of surface electrical conductivity on dielectric characteristics of polydisperse semiconductors. Sov. Phys. J. 19, 1407 (1976).
     https://doi.org/10.1007/BF00890783
  43. G. Banhegyi. Numerical analysis of complex dielectric mixture formulae. Colloid. Polym. Sci. 266, 11 (1988).
     https://doi.org/10.1007/BF01451527
  44. Polypropylene Handbook: Polymerization, Characterization, Properties, Processing, Applications, edited by E.P. Moore et al. (Hanser Publ., 1996) [ISBN-10:1569902089].
  45. A.G. Betekhtin. A Course of Mineralogy (Mir Publ., 1967).
  46. D.C. Giancoli. General Physics (Prentice-Hall, 1984).
  47. P. Fischer, P. R?ohl. Thermally stimulated and isothermal depolarization currents in low-density polyethylene. J. Polym. Sci. B 14, 531 (1976).
     https://doi.org/10.1002/pol.1976.180140313
  48. J. Orrit, J.C. Canadas, J. Sellares et al. Identification of dipolar relaxations in dielectric spectra of mid-voltage cross-linked polyethylene cables. J. Electrostatics 69, 119 (2011).
     https://doi.org/10.1016/j.elstat.2011.01.005
  49. V. Panwar, J.O. Park, S.H. Park, S. Kumar, R.M. Mehra. Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites. J. Appl. Polym. Sci. 115, 1306 (2010).
     https://doi.org/10.1002/app.29702
  50. J.K. Yuan, S.H. Yao, A. Sylvestre, J. Bai. Biphasic polymer blends containing carbon nanotubes: heterogeneous nanotube distribution and its influence on the dielectric properties. J. Phys. Chem. C 116, 2051 (2012).
     https://doi.org/10.1021/jp210872w