• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 11, p.943-949
https://doi.org/10.15407/ujpe61.11.0943    Paper

Zhaba V.I.

Uzhgorod National University
(54, Voloshyn Str., Uzhgorod 88000, Ukraine; e-mail: viktorzh@meta.ua)

Approximation of the Deuteron Wave Function with the Use of Nijmegen Potentials and Deuteron Polarization Characteristics

Section: Nuclei and Nuclear Reactions
Original Author's Text: Ukrainian

Abstract: The coefficients of analytic forms for the deuteron wave function in the configuration representation for Nijmegen potentials have been calculated numerically. The obtained wave functions do not contain redundant nodes. The calculated parameters of a deuteron agree well with experimental and theoretical data. The polarization characteristics T20 and Ayy calculated with the use of the obtained wave functions are comparable with earlier results.

Key words:  wave function, analytic form, deuteron, polarization, node.


  1. R. Machleidt. The nuclear force in the third millennium. Nucl. Phys. A 689, 11 (2001).
  2. R. Machleidt. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 63, 024001 (2001).
  3. . V.I. Kukulin et al. Moscow-type NN potentials and threenucleon bound states. Phys. Rev. C 57, 535 (1998).
  4. . R. Courant, D. Hilbert. Methods of Mathematical Physics. (Interscience, 1953) [ISBN: 10:047017952X].
  5. I. Gaisak, V. Zhaba. On nodes of the deuteron wave function. Visn. Lviv. Univ. Ser. Fiz. 44, 8 (2009).
  6. I.I. Gaisak, V.I. Zhaba. Deuteron: its wave function and parameters. Nauk. Visnyk Uzhgorod. Univ. Ser. Fiz. 36, 100 (2014).
  7. V.S. Bokhinyuk, V.I. Zhaba, O.M. Parlag. To the question of the energy dependence of the cross-section of (, ') reaction. Nauk. Visnyk Uzhgorod. Univ. Ser. Fiz. 31, 111 (2012).
  8. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart. Construction of high-quality NN potential models. Phys. Rev. C 49, 2950 (1994).
  9. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995).
  10. M. Lacombe et al. Parametrization of the deuteron wave function of the Paris NN potential. Phys. Lett. B 101, 139 (1981).
  11. S.B. Dubovichenko. Properties of Light Atomic Nuclei in the Potential Cluster Model (Daneker, 2004) (in Russian).
  12. NN-OnLine. Deuteron wavefunctions. http: //nnonline.org/NN/nn.php?page=deuteronwavefunctionstable.
  13. . J.J. de Swart, R.A.M.M. Klomp, M.C.M. Rentmeester, Th.A. Rijken. The Nijmegen potentials. Few-Body Syst. Suppl. 8, 438 (1995).
  14. A.F. Krutov, V.E. Troitsky. Parametrization of the deuteron wave function obtained within a dispersion approach. Phys. Rev. C 76, 017001 (2007).
  15. V.P. Ladygin, N.B. Ladygina. Polarization effects in the inelastic scattering of deutrons (d,d')X in the region of excitation of baryon resonances. Yad. Fiz. 65, 188 (2002).
  16. V.A. Karmanov. Polarization phenomena in the elastic pdbackscattering at energies near 1 GeV. Yad. Fiz. 34, 1020 (1981).
  17. S.S. Vasan. Deuteron spin alignment in high-energy elastic proton-deuteron backscattering. Phys. Rev. D 8, 4092 (1973).
  18. V.P. Ladygin et al. Measurement of the tensor analyzing power T20 in the dd>3Hen and dd>3Hp at intermediate energies and at zero degree. Phys. Lett. B 598, 47 (2004).
  19. L.S. Azhgirey et al. Measurement of the tensor Ayy and vector Ay analyzing powers of the deuteron inelastic scattering of beryllium at 5.0 GeV/c and 178 mrad. Phys. Atom. Nucl. 68, 991 (2005).
  20. V.P. Ladygin, L.S. Azhgirey, S.V. Afanasiev et al. e-print arXiv:nucl-ex/0412020 (2004).
  21. V.P. Ladygin et al. Tensor A and vector A analyzing powers of the (d,p) and (d,d) reactions at 5 GeV/c and 178 MR, arXiv:nucl-ex/0412020.