• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 10, p.917-922
http://dx.doi.org/10.15407/ujpe61.10.0917    Paper

Sachenko A.V., Kostylyov V.P., Vlasiuk V.M., Korkishko R.M., Sokolovs'kyi I.O., Chernenko V.V.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: sach@isp.kiev.ua)

Features in the Formation of a Recombination Current in the Space Charge Region of Silicon Solar Cells

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Dark I–V curves of silicon solar cells with various Shockley–Reed–Hall lifetimes have been studied. The lifetimes are determined from the short-circuit-current internal quantum yield. The recombination currents in the space charge region (SCR) are found to be formed within time intervals that are at least an order of magnitude shorter than the charge-carrier bulk lifetime. This effect can be associated with a high defect concentration (and, therefore, a high deep-level concentration) in the SCR of examined Si structures. The parameters of deep centers that are responsible for the recombination in the SCR have been evaluated.

Key words: recombination current, space charge region, silicon solar cells, deep recombination level.

References:

  1. V.I. Lyashenko and G.A. Fedorus, Zh. Eksp. Teor. Fiz. 8, 818 (1938).
  2. E.I. Rashba and K.B. Tolpygo, The direct voltage-current characteristic of a plane rectifier with large currents, Sov. Phys.–Tech. Phys. 1, 1388 (1956).
  3. Z.S. Gribnikov, Radiotekhn. Elektron. 9, 163 (1964).
  4. . S.C.T. Sah, R.N. Noyse, and W. Shockley, Carrier-generation and recombination in P-N junctions and P-N characteristics, Proc. IRE 45, 1228 (1957).   https://doi.org/10.1109/jrproc.1957.278528
  5. E.F. Zalewski and C.R. Duda, Silicon photodiode device with 100% external quantum efficiency, Appl. Opt. 22, 2867 (1983).   https://doi.org/10.1364/AO.22.002867
  6. A. Rohas, A.R. Paucard, B. Besse et al., Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies, IEEE Trans. El. Dev. 49, 387 (2002).   https://doi.org/10.1109/16.987107
  7. A.P. Gorban, V.P.Kostylyov, A.V. Sachenko, O.A. Serba, I.O. Sokolovs'kyi, and V.V. Chernenko, Effect of floating p-n junctions on the efficiency of silicon back side contact solar cells, Ukr. Fiz. Zh. 55, 784 (2010).
  8. A.P. Gorban, V.P.Kostylyov, A.V. Sachenko, O.A. Serba, and V.V. Chernenko, Sensor. Elektron. Mikrosyst. Tekhnol. 1, No. 7, 27 (2010).
  9. K. Bothe, R. Sinton, and J. Schmidt, Fundamental boron–oxygen-related carrier lifetime limit in mono- and multicrystalline silicon, Prog. Photovolt. 13, 287 (2005).   https://doi.org/10.1002/pip.586
  10. K. Bothe and J. Schmidt, Electronically activated boronoxygen-related recombination centers in crystalline silicon, Appl. Phys. 99, 013701 (2006).   https://doi.org/10.1063/1.2140584