• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 10, p.909-916
http://dx.doi.org/10.15407/ujpe61.10.0909    Paper

Danilov M.O.1, Rusetskii I.A.1, Slobodyanyuk I.A.1, Dovbeshko G.I.2, Kolbasov G.Ya.1, Stubrov Yu.Yu.3

1 Vernadskyi Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
(32/34, Academician Palladin Ave., Kyiv 03680, Ukraine)
2 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine)
3 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine)

Synthesis, Properties, and Application of Graphene-Based Materials Obtained from Carbon Nanotubes and Acetylene Black

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Graphene oxide and reduced graphene oxide have been chemically synthesized from multiwall carbon nanotubes. Using a proper oxidant, nanotubes can be “unzipped” longitudinally to form graphene oxide nanoribbons. Afterward, reduced graphene oxide can be obtained with the help of a reductant. Standard redox potentials of carbon are used for the selection of an oxidant and a reductant. Various physico-chemical methods are applied to verify the production of graphene-like materials. The synthesized products are used as a material for oxygen electrodes in fuel elements. The electrochemical characteristics of electrodes fabricated from graphenebased materials are found to depend on the redox ability of applied reagents. The obtained materials are shown to be promising catalyst carriers for electrodes in chemical current sources.

Key words: graphene oxide, reduced graphene oxide, electrocatalysis, electrode materials for oxygen electrode.

References:

  1. F. Bidault, D.J.L. Brett, P.H. Middleton et al., Review of gas diffusion cathodes for alkaline fuel cells, J. Power Sourc. 187, 39 (2009).   https://doi.org/10.1016/j.jpowsour.2008.10.106
  2. M. Soehn, M. Lebert, T. Wirth et al., Design of gas diffusion electrodes using nanocarbon, J. Power Sourc. 176, 494 (2008).   https://doi.org/10.1016/j.jpowsour.2007.08.073
  3. C-T. Hsieh, J-Yi. Lin, and J.-L. Wei, Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes, Int. J. Hydrogen Energy 34, 685 (2009).   https://doi.org/10.1016/j.ijhydene.2008.11.008
  4. X. Wang, M. Waje, and Y. Yan, NT-based electrodes with high efficiency for PEMFCs, Electrochem. Solid-State Lett. 8, A42 (2005).   https://doi.org/10.1149/1.1830397
  5. G. Wang, X. Shen, J. Yao et al., Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon 47, 2049 (2009).   https://doi.org/10.1016/j.carbon.2009.03.053
  6. Y. Xin, J. Liu, X. Jie et al., Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts, Electrochim. Acta 60, 354 (2012).   https://doi.org/10.1016/j.electacta.2011.11.062
  7. Z. Lin, G. Waller, Y. Liu et al., Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction, Adv. Energy Mater. 2, 884 (2012).   https://doi.org/10.1002/aenm.201200038
  8. L.T. Qu, Y. Liu, J.B. Baek et al., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4, 1321 (2010).   https://doi.org/10.1021/nn901850u
  9. Z.Y. Lin, M.K. Song, Y. Ding et al., Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction, Phys. Chem. Chem. Phys. 14, 3381 (2012).   https://doi.org/10.1039/c2cp00032f
  10. Y. Shao, S. Zhang, C. Wang et al., Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction, J. Power Sourc. 195, 4600 (2010).   https://doi.org/10.1016/j.jpowsour.2010.02.044
  11. A.G. Cano-M?arquez, F.J. Rodr??guez-Mac??as, J. CamposDelgado et al., Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Lett. 9, 1527 (2009).   https://doi.org/10.1021/nl803585s
  12. D.V. Kosynkin, W. Lu, A. Sinitskii et al., Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor, ACS Nano 5, 968 (2011).   https://doi.org/10.1021/nn102326c
  13. A. Morelos-G?omez, S.M. Vega-D??az, V.J. Gonz?alez et al., Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: Graphene nanoribbons with atomically smooth edges ACS Nano 6, 2261 (2012).   https://doi.org/10.1021/nn2043252
  14. L. Jiao, L. Zhang, X. Wang et al., Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877 (2009).   https://doi.org/10.1038/nature07919
  15. L. Valentini, Formation of unzipped carbon nanotubes by CF4 plasma treatment, Diamond Rel. Mater. 20, 445 (2011).   https://doi.org/10.1016/j.diamond.2011.01.038
  16. S. Mohammadi, Z. Kolahdouz, S. Darbari et al., Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing, Carbon 52, 451 (2013).   https://doi.org/10.1016/j.carbon.2012.09.056
  17. I. Janowska, O. Ersen, T. Jacob et al., Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation, Appl. Catal. A 371, 22 (2009).   https://doi.org/10.1016/j.apcata.2009.09.013
  18. S. Vadahanambi, J-H. Jung, R. Kumar et al., An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation, Carbon 53, 391 (2013).   https://doi.org/10.1016/j.carbon.2012.11.029
  19. A.L. El??as, As.R. Botello-M?endez, D. Meneses-Rodr??guez et al., Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels, Nano Lett. 10, 366 (2009).
  20. U.K. Parashar, S. Bhandari, R.K. Srivastava et al., Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes, Nanoscale 3, 3876 (2011).   https://doi.org/10.1039/c1nr10483g
  21. L. Jiao, X. Wang, G. Diankov et al., Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5, 321 (2010).   https://doi.org/10.1038/nnano.2010.54
  22. L. Xie, H. Wang, C. Jin et al., Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties, J. Am. Chem. Soc. 133, 10394 (2011).   https://doi.org/10.1021/ja203860a
  23. P. Kumar, L.S. Panchakarla, and C.N.R. Rao, Laserinduced unzipping of carbon nanotubes to yield graphene nanoribbons, Nanoscale 3, 2127 (2011).   https://doi.org/10.1039/c1nr10137d
  24. K. Kim, A. Sussman, and A. Zettl, Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes, ACS Nano 4, 1362 (2010).   https://doi.org/10.1021/nn901782g
  25. A.V. Talyzin, S. Luzan, I.V. Anoshkin et al., Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphene nanoribbons, ACS Nano 5, 5132 (2011).   https://doi.org/10.1021/nn201224k
  26. M.C. Pavia, W. Xu, M.F. Proen?ca et al., Unzipping of functionalized multiwall carbon nanotubes induced by STM, Nano Lett. 10, 1764 (2010).   https://doi.org/10.1021/nl100240n
  27. D.B. Shinde, J. Debgupta, A. Kushwaha et al., Electrochemical unzipping of multiwalled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons, J. Am. Chem. Soc. 133, 4168 (2011).   https://doi.org/10.1021/ja1101739
  28. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii et al., Nature 458, 872 (2009).   https://doi.org/10.1038/nature07872
  29. S. Zhang, L. Zhu, H. Song et al., How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems, J. Mater. Chem. 22, 22150 (2012).   https://doi.org/10.1039/c2jm35139k
  30. Y. Zhu, S. Murali, W. Cai et al., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22, 3906 (2010).   https://doi.org/10.1002/adma.201001068
  31. S. Pei and H.-M. Cheng, The reduction of graphene oxide, Carbon 50, 3210 (2012).   https://doi.org/10.1016/j.carbon.2011.11.010
  32. M.O. Danilov, I.A. Slobodyanyuk, I.A. Rusetskii et al., Reduced graphene oxide: a promising electrode material for oxygen electrodes, J. Nanostruct. Chem. 3, 1 (2013).   https://doi.org/10.1186/2193-8865-3-49
  33. M.O. Danilov, G.Ya. Kolbasov, I.A. Rusetskii et al., Electrocatalytic properties of multiwalled carbon nanotubes-based nanocomposites for oxygen electrodes, Russ. J. Appl. Chem. 85, 1536 (2012).   https://doi.org/10.1134/S1070427212100084
  34. S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. 18, 1 (1989).   https://doi.org/10.1063/1.555839
  35. M.O. Danilov, I.A. Slobodyanyuk, I.A. Rusetskii et al., Influence of the synthesis conditions of reduced graphene oxide on the electrochemical characteristics of the oxygen electrode, Nanosci. Nanotech. Res. 2, 12 (2014).
  36. T. Lebedieva, V. Gubanov, G. Dovbeshko, and D. Pidhirnyi, Quantum-chemical calculation and visualization of the vibrational modes of graphene at different points of the Brillouin zone, Nanoscale Res. Lett. 10, 287 (2015).   https://doi.org/10.1186/s11671-015-0945-9
  37. K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas et al., Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films, Appl. Phys. Lett. 103, 073117 (2013).   https://doi.org/10.1063/1.4818680
  38. G.I. Dovbeshko, V.R. Romanyuk, D.V. Pidgirnyi, V.V. Cherepanov, E.O. Andreev, V.M. Levin, P.P. Kuzhir, T. Kaplas, and Yu.P. Svirko, Optical properties of pyrolytic carbon films versus graphite and graphene, Nanoscale Res. Lett. 10, 234 (2015).   https://doi.org/10.1186/s11671-015-0946-8
  39. G.I. Dovbeshko, O.P. Gnatyuk, A.A. Nazarova, Yu.I. Sementsov, and E.D. Obraztsova, Conformation analysis of nucleic acids and proteins adsorbed on single-shell carbon nanotubes, Fulleren. Nanotub. Carbon Nanostr. 13, 393 (2005).   https://doi.org/10.1081/FST-200039387
  40. S.Ya. Brichka, G.P. Prikhod'ko, Yu.I. Sementsov, A.V. Brichka, O.P. Paschuk, and G.I. Dovbeshko, Synthesis of carbon nanotubes from a chlorine-containing precursor and their properties, Carbon 42, 2581 (2004).   https://doi.org/10.1016/j.carbon.2004.05.040
  41. P. Ganesan, P. Ramakrishnan, M. Prabu et al., Nitrogen and sulfur co-doped graphene supported cobalt sulfide nanoparticles as an efficient air cathode for zincair battery, Electrochim. Acta. 183, 63 (2015).   https://doi.org/10.1016/j.electacta.2015.05.182
  42. Y. Liu, J. Li, W. Li et al., Spinel LiMn2O4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminiumair battery, Int. J. Hydrogen Energy 40, 9225 (2015).   https://doi.org/10.1016/j.ijhydene.2015.05.153