• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 10, p.879-885
http://dx.doi.org/10.15407/ujpe61.10.0879    Paper

Bulavin L.A.1,2, Bilous O.I.1, Svechnikova O.S.1

1 Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
2 Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine
(12, Lysogirska Str., Bld. 106, Kyiv 03028, Ukraine; e-mail: bulavin221@gmail.com,
o_bilous@ua.fm, oksana.svechnikova@gmail.com)

Relaxation Time of Concentration Fluctuations in a Vicinity of the Critical Stratification Point of the Binary Mixture n-Pentanol–Nitromethane

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract: The propagation velocity and the absorption coefficient of ultrasound in a frequency range of 5–2800 MHz in a n-pentanol–nitromethane solution in a vicinity of its critical stratification point from the homogeneous state side have been studied. The research make it possible to reveal the influence of concentration fluctuations on the sound propagation velocity. Three regions of dynamical parameters are analyzed: the mean-field (ωτFL«1), fluctuation (ωτFL»1), and transition (crossover, ωτFL = 1) ones. On the basis of experimental data, the temperature dependence of the concentration fluctuation relaxation time τ(T) is studied, and its magnitude τ0 is determined. The contribution to the fluctuation part of the sound absorption coefficient at high frequencies (ω > 300 MHz), which is connected with the sound scattering by concentration fluctuations near the critical stratification point is estimated.

Key words:  ultrasound velocity, ultrasound absorption, critical stratification point, binary solution, concentration fluctuations, relaxation time.


  1. A.Z. Patashinskii and V.L. Pokrovsky, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1982).
  2. M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).
  3. A. Onuki, Phase Transition Dynamics (Cambridge Univ.Press, Cambridge, 2002).   https://doi.org/10.1017/CBO9780511534874
  4. K.A. Chalyy, L.A. Bulavin, and A.V. Chalyi, Dynamic scaling and central component width of critical opalescence spectrum in liquids with restricted geometry, J. Phys. Stud. 9 (1), 66 (2005).
  5. S. Artemenko, T. Lozovsky, and V. Mazur, Multiple critical points and liquid–liquid equilibria from the van der Waals like equations of state, J. Phys.: Condens. Matter. 20, 244119 (2008).   https://doi.org/10.1088/0953-8984/20/24/244119
  6. O.V. Chalyi, and O.V. Zaitseva, A kinetic model of synaptic transmission on intercell interaction, Ukr. J. Phys. 54, 366 (2009).
  7. M.P. Kozlovskii, I.V. Pylyuk, and O.O. Prytula, Critical behaviour of a three-dimensional one-component magnet in strong and weak external fields at ?? > ??c, Phys. A 369, 562 (2006).   https://doi.org/10.1016/j.physa.2006.02.016
  8. M.P. Kozlovskii, The correlation length of 3D Ising systems in the presence of an external field, Phase Trans. 80, 3 (2007).   https://doi.org/10.1080/01411590701315161
  9. I. Iwanowski, S.Z. Mirzaev, K. Orzechowski et al., Critical dynamics at the col point of the ternary system methanoln-hexane-cyclohexane, J. Mol. Liq. 145, 103 (2009).   https://doi.org/10.1016/j.molliq.2009.01.001
  10. N.O. Atamas', L.A. Bulavin, O.A. Vasylkevych et al., Yadern. Fiz. Energ. 11, 159 (2010).
  11. Kwang Hun Lim, H.J. Dyson, J.W. Kelly et al., Localized structural fluctuations promote amyloidogenic conformations in transthyretin, J. Mol. Biol. 425, 977 (2013).   https://doi.org/10.1016/j.jmb.2013.01.008
  12. I. Paul, C. P?epin, and M.R. Norman, Equivalence of single-particle and transport lifetimes from hybridization fluctuations, Phys. Rev. Lett. 110, 066402 (2013).   https://doi.org/10.1103/PhysRevLett.110.066402
  13. S.Z. Mirzaev and U. Kaatze, Scaling function of critical binary mixtures: Nitrobenzene-n-hexane data revisited, J. Chem. Phys. 393, 129 (2012).   https://doi.org/10.1016/j.chemphys.2011.11.035
  14. T. Hornowski and M. Labowski, Absorption and dispersion of ultrasonic waves in n-amylic alcohol-nitromethane critical mixture, Acta Phys. Pol. A 79, 671 (1991).   https://doi.org/10.12693/APhysPolA.79.671
  15. I. Iwanowski, R. Behrends, and U. Kaatze, Critical fluctuations near the consolute point of n-pentanol-nitromethane. An ultrasonic spectrometry, dynamic light scattering, and shear viscosity study, J. Chem. Phys. 120, 9192 (2004).   https://doi.org/10.1063/1.1703524
  16. V.S. Sperkach, A.D. Alekhin, and O.I. Bilous, Acoustic properties of liquid systems near the critical temperature, Ukr. J. Phys. 49, 655 (2004).
  17. R.A. Ferrell, Decoupled-mode dynamical scaling theory of the binary-liquid phase transition, Phys. Rev. Lett. 24, 1169 (1970).   https://doi.org/10.1103/PhysRevLett.24.1169
  18. K. Kawasaki, Kinetic equations and time correlation functions of critical fluctuations, Ann. Phys. (N.Y.) 61, 1 (1970).   https://doi.org/10.1016/0003-4916(70)90375-1
  19. A.D. Alekhin and O.I. Bilous, The phenomenological approach to estimating critical indices of critical fluid, High Temp. 53, 199 (2015).   https://doi.org/10.1134/S0018151X15020017
  20. J.K. Bhattacharjee and R.A. Ferrell, Dynamic scaling theory for the critical ultrasonic attenuation in a binary liquid, Phys. Rev. A 24, 1643 (1981).   https://doi.org/10.1103/PhysRevA.24.1643
  21. J.K. Bhattacharjee, S.Z. Mirzaev, and U. Kaatze, Does the viscosity exponent derive from ultrasonic attenuation spectra? Int. J. Thermophys. 33 (3), 469 (2012).   https://doi.org/10.1007/s10765-012-1167-3
  22. W. Schrader, and U. Kaatze, Zwitterion headgroup orientation correlation and mobility and the domain structure of membranes, J. Phys. Chem. B 105, 6266 (2001).   https://doi.org/10.1021/jp010525t
  23. R. Folk and G. Moser, Frequency-dependent shear viscosity, sound velocity, and sound attenuation near the critical point in liquids. II. Comparison with experiment, Phys. Rev. E 57, 705 (1998).   https://doi.org/10.1103/PhysRevE.57.705
  24. A. Onuki, Bulk viscosity near the critical point, J. Phys. Soc. Jpn. 66, 511 (1997).   https://doi.org/10.1143/JPSJ.66.511