• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 10, p.932-939
http://dx.doi.org/10.15407/ujpe61.10.0932    Paper

Kurnosov N.V., Leontiev V.S., Karachevtsev V.A.

B.I. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
(47, Nauky Ave., Kharkiv 61103, Ukraine)

Enhancement of Luminescence from a Carbon Nanotube Aqueous Suspension at the Cysteine Doping: Influence of the Adsorbed Polymer

Section: Nanosystems
Original Author's Text:  Ukrainian

Abstract: We have studied the enhancement of the luminescence intensity from semiconducting carbon nanotubes with the adsorbed polymer (DNA) in an aqueous suspension due to the doping with amino acid cysteine. The intensity increase is caused by the presence of a thiol group in the cysteine structure, which allows a reduction of defects on the nanotube surface that quench the emission. It is observed that the initial nanotube/polymer weight ratio affects the dependence of the luminescence intensity on the cysteine concentration so that it is shifted toward greater concentrations in case of the 1 : 1 ratio comparing to the dependence obtained for a suspension with the 1 : 0.5 ratio. Such shift can be explained by a greater surface coverage with the polymer that restricts the access of cysteine molecules to nanotube defects. We have also noted that the obtained dependences vary for nanotubes with different chiralities, which can be attributed to different densities of a polymer coverage on their surfaces.

Key words: luminescence, exciton, cysteine, DNA, carbon nanotube, structure defect.

References:

  1. V. Perebeinos, J. Tersoff, and P. Avouris, Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004).   https://doi.org/10.1103/PhysRevLett.92.257402
  2. M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Exciton photophysics of carbon nanotubes, Ann. Rev. Phys. Chem. 58, 719 (2007).   https://doi.org/10.1146/annurev.physchem.58.032806.104628
  3. N. Ai, W. Walden-Newman, Q. Song, S. Kalliakos, and S. Strauf, Suppression of blinking and enhanced exciton emission from individual carbon nanotubes, ACS Nano 5, 2664 (2011).   https://doi.org/10.1021/nn102885p
  4. M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kitrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593 (2002).   https://doi.org/10.1126/science.1072631
  5. V.A. Karachevtsev, in: Photophysics of carbon nanotubes interfaced with organic and inorganic Materials, edited by I.A. Levitsky, W.B. Euler, V.A. Karachevtsev (Springer, London, 2012), p. 89.   https://doi.org/10.1007/978-1-4471-4826-5_3
  6. G. Hong, S. Diao, A.L. Antaris, and H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Therapy Chem. Rev. 115, 10816 (2015).   https://doi.org/10.1021/acs.chemrev.5b00008
  7. A.J. Siitonen, D.A. Tsyboulski, S.M. Bachilo, and R.B.Weisman, Dependence of exciton mobility on structure in single-walled carbon nanotubes, J. Phys. Chem. Lett. 1, 2189 (2010).   https://doi.org/10.1021/jz100749c
  8. S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, and M.S. Strano, Carbon nanotubes as optical biomedical sensors, Adv. Drug Deliv. Rev. 65, 1933 (2013).   https://doi.org/10.1016/j.addr.2013.07.015
  9. G. Dukovic, B.E. White, Z. Zhou, F. Wang, S. Jockusch, M.L. Steigerwald, T.F. Heinz, R.A. Friesner, N.J. Turro, and L.E. Brus, Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes, J. Am. Chem. Soc. 126, 15269 (2004).   https://doi.org/10.1021/ja046526r
  10. A.J. Lee, X. Wang, L.J. Carlson, J.A. Smyder, B. Loesch, X. Tu, M. Zheng, and T.D. Krauss, Bright fluorescence from individual single-walled carbon nanotubes, Nano Lett. 11, 1636 (2011).   https://doi.org/10.1021/nl200077t
  11. N.V. Kurnosov, V.S. Leontiev, A.S. Linnik, O.S. Lytvyn, and V.A. Karachevtsev, Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer, Chem. Phys. 438, 23 (2014).   https://doi.org/10.1016/j.chemphys.2014.04.006
  12. N.V. Kurnosov, V.S. Leontiev, A.S. Linnik, and V.A. Karachevtsev, Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes, Chem. Phys. Lett. 623, 51 (2015).   https://doi.org/10.1016/j.cplett.2015.01.046
  13. H. Cathcart, V. Nicolosi, J.M. Hughes, W.J. Blau, J.M. Kelly, S.J. Quinn, and J.N. Coleman, Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions, J. Am. Chem. Soc. 130, 12734 (2008).   https://doi.org/10.1021/ja803273s
  14. V.A. Karachevtsev, A.Yu. Glamazda, A.M. Plokhotnichenko, V.S. Leontiev, and A.S. Linnik, Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of single-walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study, Materialwissenschaft und Werkstofftechnik 42, 41 (2011).   https://doi.org/10.1002/mawe.201100728
  15. T.J. McDonald, D. Svedruzic, Y.-H. Kim, J.L. Blackburn, S.B. Zhang, P.W. King, and M.J. Heben, Wiring-up hydrogenase with single-walled carbon nanotubes, Nano Lett. 11, 3528 (2007).   https://doi.org/10.1021/nl072319o
  16. A.G. Walsh, A.N. Vamivakas, Y. Yin, S.B. Cronin, M.S. Unlu, B.B. Goldberg, and A.K. Swan, Screening of excitons in single, suspended carbon nanotubes, Nano Lett. 7, 1485 (2007).   https://doi.org/10.1021/nl070193p
  17. V.A. Karachevtsev, A.M. Plokhotnichenko, A.Yu. Glamazda, V.S. Leontiev, and I.A. Levitsky, Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies, Phys. Chem. Chem. Phys. 16, 10914 (2014).   https://doi.org/10.1039/c4cp00776j
  18. E. Kaniowska, G. Chwatko, R. Glowacki, P. Kubalczyk, and E. Bald, Urinary excretion measurement of cysteine and homocysteine in the form of their S-pyridinium derivatives by high-performance liquid chromatography with ultraviolet detection, J. Chromatogr. A 798, 27 (1998).   https://doi.org/10.1016/S0021-9673(97)01193-X