• Українська
  • English

<Prev | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 10, p.853-863
http://dx.doi.org/10.15407/ujpe61.10.0853    Paper

Makhnii T.1, Ilchenko O.1, Reynt A.1, Pilgun Y.2, Kutsyk A.2, Krasnenkov D.1, Ivasyuk M.3, Kukharskyy V.1

1 D.F. Chebotarev State Institute of Gerontology of the NAMS of Ukraine
(67, Vyshhorodska Str., Kyiv 04114, Ukraine; e-mail: makhni1tanya@gmail.com)
2 Faculty of Radio Physics, Electronics and Computer Systems,
Taras Shevchenko National University of Kyiv
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)
3 Faculty of Life Science, National University of Kyiv-Mohyla Academy
(2, G. Skovoroda Str., Kyiv 04655, Ukraine)

Age-Related Changes in FTIR and Raman Spectra of Human Blood

Section: Atoms and Molecules
Original Author's Text: English

Abstract:  Blood analysis by spectroscopic techniques can provide important information about biochemistry and life processes in it. Blood indices are highly variable, and plenty of factors influence them. The present work describes the combination of two methods – IR and Raman spectroscopies of blood applied to investigate gerontology issues. We carried out a pilot study of 74 blood samples. The donors were differentiated by age with the Partial Least Squares (PLS) analysis of Raman and IR spectra. Analyzing the principal component spectra obtained during PLS processn the most illustrative bands were found in the intervals 2860–3030 cm-1, 1370–1620 cm-1, 1020–1220 cm-1 and in 1650–1530 cm-1, 1380–1360 cm-1, 1220–1200 cm-1, 1002–1004 cm-1, 760–750 cm-1 in IR and Raman spectral regions, respectively. Calibration models obtained via the PLS analysis of blood vibrational spectra provide the accuracy of age determination around 15 years from FTIR data and around 20 years from Raman data. Though such calibrations cannot be used for the precise determination of age, the agerelated changes of blood do really exist and can be detected from vibrational spectra.

Key words: human blood, age, Raman spectroscopy, ATR-FTIR spectroscopy, Partial Least Squares (PLS) analysis.

References:

  1. M.J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sul?e-Suso, R.J. Strong, M.J. Walsh, B.R Wood, P. Gardner, and F.L Martin, Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc. 8, 1771 (2014).   https://doi.org/10.1038/nprot.2014.110
  2. D. Naumann, FT-infrared and FT-Raman spectroscopy in biomedical research, Appl. Spectrosc. Rev. 36, 239 (2011).   https://doi.org/10.1081/ASR-100106157
  3. D.I. Ellis and R. Goodacre, Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy, Analyst 131, 875 (2006).   https://doi.org/10.1039/b602376m
  4. S. Yoshida, M. Yoshida, M. Yamamoto, and J. Takeda, Optical screening of diabetes mellitus using non-invasive Fourier-transform infrared spectroscopy technique for human lip, J. Pharmaceutical and Biomedical Analysis. 76, 25, 169 (2013).   https://doi.org/10.1016/j.jpba.2012.12.009
  5. P.J. Wu, M.H. Chang, C.Y. Huang, Y.C. Wang, J.R. Kuo, Y.J. Huang, and Lin, Near-infrared spectroscopy system for determining brain hemoglobin level, Conf. Proc. IEEE Eng. Med. Biol. Soc. 24, 12 (2013).
  6. W.R. Premasiri, J.C. Lee, and L.D. Ziegler, Surfaceenhanced Raman scattering of whole human blood, blood plasma, and red blood cells: Cellular processes and bioanalytical sensing, J. Phys. Chem. B 116, 9376 (2012).   https://doi.org/10.1021/jp304932g
  7. B. Yan, B. Li, Z. Wen, X. Luo, L. Xue, and L. Li, Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors, BMC Cancer 15, 650 (2015).   https://doi.org/10.1186/s12885-015-1653-7
  8. H.M. Heise, R. Marbach, G. Janatsch, and J.D. KruseJarres, Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy, Anal. Chem. 61, 2009 (1989).   https://doi.org/10.1021/ac00193a004
  9. S. Ahlawat, A. Chowdhury, N. Kumar, A. Uppal, R.S. Verma, and P.K. Gupta, Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells, J. Biomed. Opt. 19, 087002 (2014).   https://doi.org/10.1117/1.JBO.19.8.087002
  10. P.S. Bernstein, D.-Y. Zhao, S.W. Wintch, I.V. Ermakov, R.W. McClane, and W. Gellermann, Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients, Ophthalmology 109, 1780 (2002).   https://doi.org/10.1016/S0161-6420(02)01173-9
  11. M. Kozicki, D.J. Creek, A. Sexton, B.J. Morahan, A. Wese lucha-Birczy?nska, and B.R. Wood, An attenuated total reflection (ATR) and Raman spectroscopic investigation into the effects of chloroquine on Plasmodium falciparuminfected red blood cells, Analyst 140, 2236 (2015).   https://doi.org/10.1039/C4AN01904K
  12. J.W. Ager, R.K. Nalla, K.L. Breeden, and R.O. Ritchie, Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone, J. of Biomed. Opt. 10, 034012 (2005).   https://doi.org/10.1117/1.1924668
  13. K. Virkler and I.K. Lednev, Forensic body fluid identification: the Raman spectroscopic signature of saliva, Analyst 135, 512 (2010).   https://doi.org/10.1039/B919393F
  14. Y.H. Ong, M. Lim, and Q. Liu, Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells, Opt. Express 20, 22158 (2012).   https://doi.org/10.1364/OE.20.022158
  15. U. Neugebauer, J.H. Clement, T. Bocklitz, C. Krafft, and J. Popp, Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging, J. Biophoton. 3, 579 (2010).   https://doi.org/10.1002/jbio.201000020
  16. T.G. Spiro and J.M. Burke, Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogs, J. Am. Chem. Soc. 98, 5482 (1976).   https://doi.org/10.1021/ja00434a013
  17. T.W. Scott and J.M. Friedman, Tertiary-structure relaxation in hemoglobin: a transient Raman study, J. Am. Chem. Soc. 106, 5677 (1984).   https://doi.org/10.1021/ja00331a044
  18. C. Krafft, L. Neudert, T. Simat, and R. Salzer, Near infrared Raman spectra of human brain lipids, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61, 1529 (2005).   https://doi.org/10.1016/j.saa.2004.11.017
  19. B.R. Wood, P. Caspers, G.J. Puppels, Sh. Pandiancherri, and D. McNaughton, Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation, Anal. Bioanal. Chem. 387, 1691 (2007).   https://doi.org/10.1007/s00216-006-0881-8
  20. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, Raman spectroscopy for identification of epithelial cancers, Faraday Discuss. 126, 141 (2004).   https://doi.org/10.1039/b304992b
  21. L.E. Kamemoto, A.K. Misra, S.K. Sharma, M.T. Goodman, H. Luk, A.C. Dykes, and T. Acosta, Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer, Appl. Spectrosc. 64, 255 (2010).   https://doi.org/10.1366/000370210790918364
  22. G. Shetty, C. Kedall, N. Shepherd, N. Stone, and H. Barr, Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus, Br. J. Cancer 94, 1460 (2006).   https://doi.org/10.1038/sj.bjc.6603102
  23. L. Rimai, I. Salmeen, and D.H. Petering, Comparison of the resonance Raman spectra of carbon monoxy and oxy hemoglobin and myoglobin: similarities and differences in heme electron distribution, Biochemistry 14, 378 (1975).   https://doi.org/10.1021/bi00673a026
  24. J. Lin, R. Chen, S. Feng, J. Pan, Y. Li, G. Chen, M. Cheng, Z. Huang, Y. Yu, and H. Zeng, A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection, Nanomedicine: Nanotechnology, Biology, and Medicine 7, 655 (2011).   https://doi.org/10.1016/j.nano.2011.01.012
  25. A. Bankapur, S. Barkur, S. Chidangil, and D. Mathur, A micro-Raman study of live, single red blood cells (RBCs) treated with AgNO3 nanoparticles, PLoS One 9, e103493 (2014).   https://doi.org/10.1371/journal.pone.0103493
  26. J.W. Chan, D.S. Taylor, T. Zwerdling, S.M. Lane, K. Ihara, and T. Huser, Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J. 90, 648 (2006) .   https://doi.org/10.1529/biophysj.105.066761
  27. B. Prescott, W. Steinmetz, and G.J. Thomas, Characterization of DNA structures by laser Raman spectroscopy, Biopolymers 23, 235 (1984).   https://doi.org/10.1002/bip.360230206
  28. T.G. Spiro and T.C. Strekas, Resonance Raman spectra of heme proteins. Effects of oxidation and spin state, J. Am. Chem. Soc. 96, 338 (1974).   https://doi.org/10.1021/ja00809a004
  29. B.R. Wood and D. McNaughton, Raman excitation wavelength investigation of single red blood cells in vivo, J. Raman Spectrosc. 33, 517 (2002).   https://doi.org/10.1002/jrs.870
  30. C. Krafft, S.B. Sobottka, G. Schackertb, and R. Salzer, Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors, Analyst 130, 1070 (2005).   https://doi.org/10.1039/b419232j
  31. W. Chua-anusorn and J. Webb, Infrared spectroscopic studies of nanoscale iron oxide deposits isolated from human thalassemic tissues, J. Inorg. Biochem. 79, 303 (2000).   https://doi.org/10.1016/S0162-0134(99)00233-0
  32. G. Rusciano, A. De Luca, G. Pesce, and A. Sasso, Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders, Sensors 8, 7818 (2008).   https://doi.org/10.3390/s8127818
  33. A.J. Ruiz-Chica, M.A. Medina, F. S?anchez-Jim?enez, and F.J. Ram??rez, Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine, J. Raman Spectrosc. 35, 93 (2004).   https://doi.org/10.1002/jrs.1107
  34. V.K. Ghodakel and G.R. Kulkarnil, Effect of low frequency mechanical vibrations on human blood (in vitro), Int. J. Chem. Phys. Sci. 4 Special Issue 5 ETP (2015).
  35. L.N. Salmaso, G.J. Puppels, P.J. Caspers, R. Floris, R. Wever, and J. Greve, Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes, Biophys. J. 67, 436 (1994).   https://doi.org/10.1016/S0006-3495(94)80499-0
  36. N. Stone, C. Kendell, N. Shepherd, P. Crow, and H. Barr, Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers, J. Raman Spectrosc. 33, 564 (2002).   https://doi.org/10.1002/jrs.882
  37. Z. Huang, A. McWclliams, H. Lui, D.I. McLean, S. Lam, and H. Zeng, Near-infrared Raman spectroscopy for optical diagnosis of lung cancer, Int. J. Cancer 107, 1047 (2003).   https://doi.org/10.1002/ijc.11500
  38. A. Mahadevan-Jansen and R.R. Kortum, Raman spectroscopy for the detection of cancers and precancers, J. Biomed. Opt. 1, 31 (1996).   https://doi.org/10.1117/12.227815
  39. R.K Dukor, Vibrational spectroscopy in the detection of cancer, Biomed. Appl. 5, 3335 (2002).
  40. J.V. Glenn, J.R. Beattie, L. Barrett, N. Frizzell, S.R. Thorpe, M.E. Boulton, J.J. McGarvey, and A.W. Stitt, Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch's membrane leading to accurate, nondestructive prediction of ocular aging, The FASEB Journal 21, 3542 (2007).   https://doi.org/10.1096/fj.06-7896com
  41. G. Bud??nov?a, J. Salva, and K. Volka, Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum, Appl. Spectrosc. 51, 631 (1997).   https://doi.org/10.1366/0003702971941034
  42. S. Olszty?nska-Janus, K. Szymborska-Malek, M. G?asior Glogowska, T. Walski, M. Komorowska, W. Witkiewicz, C. Pezowicz, M. Kobielarz, and S. Szotek, Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy, Acta of Bioengin. and Biomech. Rev. 14, 101 (2012).
  43. R. Manoharan, J.J. Baraga, R.P. Rava, R.R. Dasari, M. Fitzmaurice, and M.S. Feld, Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy, Atherosclerosis 103, 181 (1993).   https://doi.org/10.1016/0021-9150(93)90261-R
  44. N.S. Eikje, K. Aizawa, T. Sota, Y. Ozaki, and S. Arase, Identification and characterization of skin biomolecules for drug targeting and monitoring by vibrational spectroscopy, Open Med. Chem. J. 2, 38 (2008).   https://doi.org/10.2174/1874104500802010038
  45. Y.-J. Kim, S. Hahn, and G. Yoon, Determination of glucose in whole blood samples by mid-infrared spectroscopy, Appl. Opt. 42, 745 (2003).   https://doi.org/10.1364/AO.42.000745
  46. L.A. Tamic and K.A. Hartman, The infrared spectra and structure of the amadori product formed from glucose and glycine, Appl. Spectrosc. 39, 591 (1985).   https://doi.org/10.1366/0003702854250095
  47. S. Arikana, H.S. Sands, R.G. Rodwaya, and D.N. Batchelder, Raman spectroscopy and imaging of -carotene in live corpus luteum cells, Animal Reprod. Sci. 71, 249 (2002).   https://doi.org/10.1016/S0378-4320(02)00020-9
  48. M.F. Zhu, X.P. Ye, Y.Y. Huang, Z.Y. Guo, Z.F. Zhuang, and S.H. Liu, Detection of methemoglobin in whole blood based on confocal micro-Raman spectroscopy and multivariate statistical techniques, Scanning 36, 471 (2014).   https://doi.org/10.1002/sca.21143
  49. S. Olszty?nska-Janus, M. G?asior-G logowska, K. Szymborska-Malek, B. Czarnik-Matusewicz, and M. Komorowska, Specific applications of vibrational spectroscopy in biomedical engineering, Biomedical Engineering, Trends, Research and Techn. 4, 91 (2011).
  50. B.R. Wood, P. Caspers, G.J. Puppels, Sh. Pandiancherri, and D. McNaughton, Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation, Anal. Bioanal. Chem. 387, 1691 (2007).   https://doi.org/10.1007/s00216-006-0881-8
  51. D. Sheng, Y. Wu, X. Wang, D. Huang, X. Chen, and X. Liu, Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy, Spectrochim. Acta Part A: Mol. and Biomol. Spectr. 116, 365 (2013).   https://doi.org/10.1016/j.saa.2013.07.055
  52. C. Petibois, G. Cazorla, A. Cassaigne, and G. D?el?eris, Plasma protein contents determined by Fourier-transform infrared spectrometry, Clinical Chemistry 47, 730 (2001).
  53. M. Polakovs, N. Mironova-Ulmanea, N. Kurjaneb, E. Reinholdsc, and M. Grubed, Proc. of Sixth International Conference on Advanced Optical Materials and Devices, edited by J. Spigulis, A. Krumins, D. Millers, A. Sternberg, I. Muzikante, A. Ozols, M. Ozolinsh, SPIE (2008) p. 714214-1.   https://doi.org/10.1117/12.815796
  54. S.J. Ahmed, W. Santosh, S. Kumar et al., Neural network algorithm for the early detection of Parkinson's disease from blood plasma by FTIR micro-spectroscopy, Vib. Spectrosc. 53, 181 (2010).   https://doi.org/10.1016/j.vibspec.2010.01.019
  55. Changan Xie and Yong-qing Li, Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques, J. Appl. Phys. 93, 2982 (2003).   https://doi.org/10.1063/1.1542654
  56. T.C. Strecas and T.G. Spiro, Hemoglobin: Resonance Raman spectra, Biochim. Biophys. Acta 263, 830 (1972).   https://doi.org/10.1016/0005-2795(72)90072-4
  57. A. Perrenoud, E.C. Rangel, R.P. Mota, S.F. Durrant, and N.C. da Cruz, Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces, Mat. Res. 13, 95 (2010).   https://doi.org/10.1590/S1516-14392010000100019
  58. A.L. Pomerantsev, Chemometrics in Excel (Wiley, New York, 2014).   https://doi.org/10.1002/9781118873212
  59. P.H. Garthwaite, An interpretation of partial least squares, J. Am. Stat. Assoc. 89, 122 (1994).   https://doi.org/10.1080/01621459.1994.10476452
  60. O.Ye. Rodionova and A.L. Pomerantsev, Chemometrics: achievements and prospects, Russ. Chem. Rev. 75, 271 (2006).   https://doi.org/10.1070/RC2006v075n04ABEH003599
  61. B.R. Wood, B. Tait, and D. McNaughton, Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte, Biochim. Biophys. Acta 1539, 58 (2001).   https://doi.org/10.1016/S0167-4889(01)00089-1
  62. W.F. DeNino, A. Tchernof, I.J. Dionne, M.J. Toth, P.A. Ades, C.K. Sites, and E.T. Poehlman, Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women, Diabetes Care 24, 925 (2001).   https://doi.org/10.2337/diacare.24.5.925
  63. S. Boyd, M.F. Bertino, and S.J. Seashols, Raman spectroscopy of blood samples for forensic applications, Forensic Sci. Intern. 208, 124 (2011).   https://doi.org/10.1016/j.forsciint.2010.11.012