• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.66-74
https://doi.org/10.15407/ujpe61.01.0066    Paper

Boyko I.V.

I. Pulyui National Technical University of Ternopil
(56, Rus’ka Str., Ternopil 46001, Ukraine; e-mail: boyko.i.v.theory@gmail.com)

Role of Two-Photon Electronic Transitions in the Formation of Active Dynamic Conductivity in a Three-Barrier Resonance Tunneling Structure with an Applied DC Electric Field

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The theory of active dynamic conductivity in a three-barrier resonance tunneling structure subjected to the combined action of a weak electromagnetic field and a longitudinal dc electric field is developed with regard for the contribution of laser-induced one- and two-photon electronic transitions with different frequencies. For this purpose, the full Schrödinger equation is solved in the effective mass approximation and with the use of the model of rectangular potential wells and barriers for an electron. The maximum contribution of two-photon transitions to the formation of the total active dynamic conductivity in laser-induced transitions is shown not to exceed 38%. Geometric configurations of the resonance tunneling structure, for which the laser radiation intensity increases due to laser-induced two-photon electronic transitions, are determined.

Key words: resonance tunneling structure, quantum cascade laser, quantum cascade detector, active dynamic conductivity, two-photon electronic transition.

References:

  1. D. Bachmann, M. Rosch, C. Deutsch, M. Krall, G. Scalari, M. Beck, J. Faist, K. Unterrainer, and J. Darmo, Appl. Phys. Lett. 105, 181118 (2014).   https://doi.org/10.1063/1.4901316
  2. J.M. Wolf, A. Bismuto, M. Beck, and J. Faist, Opt. Express 22, 2111 (2014).   https://doi.org/10.1364/OE.22.002111   PubMed
  3. A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, X. Marcadet, and V. Berger, Appl. Phys. Lett. 96, 172101 (2010).   https://doi.org/10.1063/1.3409139
  4. D. Hofstetter, F.R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Kohler, Appl. Phys. Lett. 93, 221106 (2008).   https://doi.org/10.1063/1.3036897
  5. M.V. Tkach, Ju.O. Seti, I. V. Boyko, and O.M. Voitsekhivska, Condens. Matter Phys. 16, 33701 (2013).   https://doi.org/10.5488/CMP.16.33701
  6. M. Tkach, Ju. Seti, I. Boyko, and O. Voitsekhivska, Rom. Rep. Phys. 65, 1443 (2013).
  7. M. Tkach, Ju.O. Seti, V.O. Matiek, and I.V. Boyko, Zh. Fiz. Dosl. 16, 4701 (2012).
  8. E. Saczuk and J.Z. Kaminski, Phys. Status Solidi B 240, 603 (2003).   https://doi.org/10.1002/pssb.200301898
  9. E. Saczuk and J.Z. Kaminski, Laser Phys. 15, 1691 (2005).
  10. N.V. Tkach and Ju.A. Seti, JETP Lett. 95, 271 (2012).   https://doi.org/10.1134/S0021364012050074
  11. N.V. Tkach and Ju.A. Seti, Fiz. Tekh. Poluprovodn. 48, 610 (2014).
  12. A.B. Pashkovskii, JETP Lett. 89, 30 (2009).   https://doi.org/10.1134/S002136400901007X
  13. A.B. Pashkovskii, Fiz. Tekh. Poluprovodn. 45, 759 (2011).
  14. N.V. Tkach and Ju.A. Seti, Low Temp. Phys. 35, 556 (2009).   https://doi.org/10.1063/1.3170931
  15. Y. Ando and T. Itoh, J. Appl. Phys. 61, 1497 (1987).   https://doi.org/10.1063/1.338082
  16. S. Kumar, C. Wang, I. Chan, Q. Hu, and J.L. Reno, Appl. Phys. Lett. 95, 141110 (2009).   https://doi.org/10.1063/1.3243459