• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.59-65
https://doi.org/10.15407/ujpe61.01.0059    Paper

Kulish V.V.

National Technical University of Ukraine “Kyiv Polytechnic Institute”, Chair of General and Experimental Physics
(37, Peremogy Ave., Kyiv 03056, Ukraine; e-mail: kulish_volv@ukr.net)

Spin Waves in a Ferromagnetic Nanotube. Account of Dissipation and Spin-Polarized Current

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Dipole-exchange spin waves in a ferromagnetic nanotube with a circular cross-section have been studied in the presence of a spin-polarized electric current. The exchange and dipoledipole magnetic interactions, anisotropy, dissipation effects, and the influence of a spinpolarized current are taken into consideration. An equation for the magnetic potential of spin excitations in the system concerned is derived, and the dispersion relation for spin waves is obtained. Depending on its direction, the spin-polarized current is demonstrated to either strengthen or weaken the effective dissipation. A condition, under which the presence of the spin-polarized current can lead to a generation of a spin wave, is determined.

Key words: spin wave, ferromagnetic nanotube, dipole-exchange theory, nanomagnetism, spin-polarized current.

References:

  1. A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminskii, Spin Waves (North Holland, Amsterdam, 1968).
  2. V.V. Kruglyak, S.O. Demokritov, and D. Grundler, J. Phys. D 43, 264001 (2010).   https://doi.org/10.1088/0022-3727/43/26/264001
  3. R.P. van Stapele, F.J.A.M. Greidanus, and J.W. Smits, J. Appl. Phys. 57, 1282 (1985).   https://doi.org/10.1063/1.334527
  4. B.A. Kalinikos, N.G. Kovshikov, and A.N. Slavin, J. Appl. Phys. 69, 5712 (1991).   https://doi.org/10.1063/1.347896
  5. M. Bauer, O. Buttner, S.O. Demokritov, B. Hillebrands, V. Grimalsky, Yu. Rapoport, and A.N. Slavin, Phys. Rev. Lett. 81, 3769 (1998).   https://doi.org/10.1103/PhysRevLett.81.3769
  6. R. Arias and D.L. Mills, Phys. Rev. B 63, 134439 (2001).   https://doi.org/10.1103/PhysRevB.63.134439
  7. R. Skomski, M. Chipara, and D.J. Sellmyer, J. Appl. Phys. 93, 7604 (2003).   https://doi.org/10.1063/1.1558691
  8. P.C. Fletcher and C. Kittel, Phys. Rev. 120, 2004 (1960).   https://doi.org/10.1103/PhysRev.120.2004
  9. S.M. Cherif, Y. Roussigne, C. Dugautier, and P. Moch, J. Magn. Magn. Mater. 222, 337 (2000).   https://doi.org/10.1016/S0304-8853(00)00581-3
  10. K.Yu. Guslienko and A.N. Slavin, J. Appl. Phys. 87, 6337 (2000).   https://doi.org/10.1063/1.372698
  11. F.G. Aliev, J.F. Sierra, A.A. Awad, G.N. Kakazei, D.-S. Han, S.-K. Kim, V. Metlushko, B. Ilic, and K.Y. Guslienko, Phys. Rev. B 79, 174433 (2009).   https://doi.org/10.1103/PhysRevB.79.174433
  12. J. Jorzick, S.O. Demokritov, C. Mathieu, B. Hillebrands, B. Bartenlian, C. Chappert, F. Rousseaux, and A.N. Slavin, Phys. Rev. B 60, 15194 (1999).   https://doi.org/10.1103/PhysRevB.60.15194
  13. S. Neusser and D. Grundler, Adv. Mat. 21, 2927 (2009).   https://doi.org/10.1002/adma.200900809
  14. C. Chappert, A. Fert, and F.N. Van Dau, Nat. Mater. 6, 813 (2007).   https://doi.org/10.1038/nmat2024   PubMed
  15. T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R.L. Stamps, and M.P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).   https://doi.org/10.1063/1.2834714
  16. Y.C. Sui, R. Skomski, K.D. Sorge, and D.J. Sellmyer, Appl. Phys. Lett. 84, 1525 (2004).   https://doi.org/10.1063/1.1655692
  17. K. Nielsch, F.J. Castano, C.A. Ross, and R. Krishnan, J. Appl. Phys. 98, 034318 (2005).   https://doi.org/10.1063/1.2005384
  18. K. Nielsch, F.J. Castano, S. Matthias, W. Lee, and C.A. Ross, Adv. Eng. Mat. 7, 217 (2005).   https://doi.org/10.1002/adem.200400192
  19. P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, and E.E. Vogel, Appl. Phys. Lett. 90, 102501 (2007).   https://doi.org/10.1063/1.2437655
  20. Z.K. Wang, H.S. Lim, H.Y. Liu, S.C. Ng, M.H. Kuok, L.L. Tay, D.J. Lockwood, M.G. Cottam, K.L. Hobbs, P.R. Larson, J.C. Keay, G.D. Lian, and M.B. Johnson, Phys. Rev. Lett. 94, 137208 (2005).   https://doi.org/10.1103/PhysRevLett.94.137208   PubMed
  21. R. Sharif, S. Shamaila, M. Ma, L.D. Yao, R.C. Yu, X.F. Han, and M. Khaleeq-ur-Rahman, Appl. Phys. Lett. 92, 032505 (2008).   https://doi.org/10.1063/1.2836272
  22. Y. Ye and B. Geng, Crit. Rev. Solid State Mater. Sci. 37, 75 (2012).   https://doi.org/10.1080/10408436.2011.613491
  23. A.K. Salem, P.C. Searson, and K.W. Leong, Nat. Mater. 2, 668 (2003).   https://doi.org/10.1038/nmat974   PubMed
  24. C.C. Berry and A.S.G. Curtis, J. Phys. D 36, R198 (2003).   https://doi.org/10.1088/0022-3727/36/13/203
  25. H. Leblond and V. Veerakumar, Phys. Rev. B 70, 134413 (2004).   https://doi.org/10.1103/PhysRevB.70.134413
  26. A.L. Gonz’alez, P. Landeros, and A.S. N’u˜nez, J. Magn. ´ Magn. Mater. 322, 530 (2010).   https://doi.org/10.1016/j.jmmm.2009.10.010
  27. J.A. Ot’alora, J.A. L’opez-L’opez, A.S. N’u˜nez, and P. Landeros, J. Phys.: Condens. Matter 24, 436007 (2012).
  28. Yu.I. Gorobets and V.V. Kulish, Ukr. Fiz. Zh. 59, 544 (2014).
  29. C. Wu, Spin Wave Resonance and Relaxation in Microwave Magnetic Multilayer Structures and Devices, Ph.D. thesis (New York, 2008).
  30. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).   https://doi.org/10.1016/0304-8853(96)00062-5
  31. L. Berger, Phys. Rev. B 54, 9353 (1996).   https://doi.org/10.1103/PhysRevB.54.9353
  32. A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 44, 1916 (2008).   https://doi.org/10.1109/TMAG.2008.924537
  33. A. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009).   https://doi.org/10.1109/TMAG.2008.2009935
  34. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, and T.J. Silva, Phys. Rev. Lett. 92, 027201 (2004).   https://doi.org/10.1103/PhysRevLett.92.027201   PubMed