• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.50-58
https://doi.org/10.15407/ujpe61.01.0050    Paper

Gorishnyi M.P., Verbitsky A.B.

Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: gorishny@iop.kiev.ua)

Structural, Optical, and Photovoltaic Properties of Tetracene Thin Films

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: The structure, absorption spectra, and photovoltaic response of tetracene (Tc) thin films 120 and 200 nm in thickness deposited in a vacuum of 6.5 MPa onto different substrates at room temperature have been studied. The photovoltaic response is measured by the method of capacitor cell. It is found that island films are formed on glass and quartz substrates, whereas solid polycrystalline films on copper ones, which is a result of the different interaction energies of Tc molecules with one another and with substrate molecules, molecules of ITO layers, and carbon atoms on the substrate surface. In quasi-amorphous films at a temperature of 4.2 K, excited molecules are deformed stronger as compared to those in polycrystalline films and free molecules at 300 K.
       The photo-emf Vf at the front (illuminated) free surfaces of Tc films is negative in the spectral interval of 1.637–3.258 eV, which testifies to the hole photoconductivity in the films. The photo-emf Vr at the rear surface of 120-nm Tc films (illumination through the ITO electrode, which directly contacted with the Tc film) changed its sign in the spectral intervals of 2.193– 2.494 and 2.927–3.153 eV as the oxygen concentration in the measuring cell decreased, which testifies to a change of the energy band bending in the Tc films near their rear and front (free) surfaces.

Key words: tetracene thin films, Al–Tc–Au heterostructures, photovoltaic response.

References:

  1. N. Geacintov, M. Pope, and H. Kallman, J. Chem. Phys. 45, 2639 (1966).   https://doi.org/10.1063/1.1727984f   PubMed
  2. A.K. Ghosh and T.Feng, J. Appl. Phys. 44, 2781 (1973).   https://doi.org/10.1063/1.1662650
  3. R. Signerski, J. Kalinowski, I. Koropecky et al., Thin Solid Films 121, 175 (1984).   https://doi.org/10.1016/0040-6090(84)90301-8
  4. P.J. Reucroft, P.L. Kronick, and E.E. Hillman. Mol. Cryst. Liq. Cryst. 6, 247 (1969).
  5. G. Horowitz. J. Mater. Res. 19, 1946 (2004).   https://doi.org/10.1557/JMR.2004.0266
  6. F. Cicoira, C. Santato, F. Dinelli et al., Adv. Funct. Mater. 15, 375 (2005).   https://doi.org/10.1002/adfm.200400278
  7. J.-M. Choi, J. Lee, D.K. Hwang et al., Appl. Phys. Lett. 88, 043508 (2006).   https://doi.org/10.1063/1.2168493
  8. Y. Xia, V. Kalinari, and C.-D. Frislie. Appl. Phys. Lett. 90, 162106 (2007).   https://doi.org/10.1063/1.2724895
  9. Md.M. Islam, J. Bangladesh Chem. Soc. 25, 194 (2012). 10. C.-T. Chien and C.-C. Lin, J. Mater. Chem. 22, 13070 (2012).
  10. A. Hepp, H. Heil, W. Weise et al., Phys. Rev. Lett. 91, 157406 (2003).   https://doi.org/10.1103/PhysRevLett.91.157406   PubMed
  11. C. Rostb, S.F. Kargb, and M.Muccini, Synth. Metals 146, 329 (2004).   https://doi.org/10.1016/j.synthmet.2004.08.028
  12. J. Reynaert, D. Cheyns, D.Janssen et al., J. Appl. Phys. 97, 114501 (2005).   https://doi.org/10.1063/1.1913793
  13. T. Takahashi, T. Takenobu, J. Takeya et al., Adv. Funct. Mater. 17, 1623 (2007).   https://doi.org/10.1002/adfm.200700046
  14. Y. Ohshima, H. Satou, N. Hirako et al., Jpn. J. Appl. Phys. 50, 04DK14 (2011).   https://doi.org/10.7567/JJAP.50.04DK14
  15. C.-W. Chu, Y. Shao, V. Shrotriya et al., Appl. Phys. Lett. 86, 243506 (2005).   https://doi.org/10.1063/1.1946184
  16. Y. Shao, S. Sista, C.-W. Chu et al., Appl. Phys. Lett. 90, 103501 (2007).   https://doi.org/10.1063/1.2709505
  17. R.J. Tseng, R. Chan, V.C. Tung et al., Adv. Mater. 20, 435 (2008).   https://doi.org/10.1002/adma.200701374
  18. R. Signerski. Mater. Sci. Poland 27, 763 (2009).
  19. M.P. Gorishnyi, A.V. Verbitsky, A.V. Kovalchuk et al., Semicond. Phys. Quant. Electr. Optoelectr. 11, No. 3, 236 (2008).
  20. R. Jankowiak, K.D. Rockwitz, and H. B¨assler, J. Phys. Chem. 87, 552 (1983).   https://doi.org/10.1021/j100227a008
  21. D.D. Kolendritskii, M.V. Kurik, and Yu.P. Pirjatinskii, Phys. Status Solidi B 91, 741 (1979).   https://doi.org/10.1002/pssb.2220910243
  22. W. Riemer and J.V. Hardy, Phys. Status Solidi A 14, 473 (1972).   https://doi.org/10.1002/pssa.2210140212
  23. E.I. Silins, M.V. Kurik, and V. Capek, Electronic Processes in Organic Molecular Crystals. Localization and Polarization Phenomena (Zinatne, Riga, 1988) (in Russian).   PubMed
  24. L. Viduta, T. Gavrilko, A. Marchenko et al., Ukr. J. Phys. 57, 260 (2012).
  25. G. Herzberg, Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
  26. E.F. McCoy and I.G. Ross, Austr. J. Chem. 15, 573 (1963).   https://doi.org/10.1071/CH9620573
  27. M.P. Gorishnyi, M.V. Kurik, and L. Libera, Ukr. Fiz. Zh. 32, 1013 (1987). 29. J.M. Turlet and M.R. Philpott, J. Chem. Phys. 62, 4260 (1975).   https://doi.org/10.1063/1.430346
  28. Yu.M. Lopatkin, Research of the Processes of Information Reflection in Linear Polyacetate Films, Ph.D. thesis (Kyiv, 1982) (in Russian).
  29. M.P. Gorishnyi, Ukr. Fiz. Zh. 52, 1154 (2007).
  30. Ya.I. Vertsymakha and Yu.M. Lopatkin, in Fundamentals of Optical Memory and Medium, No. 15 (1984), p. 49 (in Russian).