• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.38-43
https://doi.org/10.15407/ujpe61.01.0038    Paper

Il'chenko V.V., Kostiukevych O.M., Lendiel V.V., Radko V.I., Goloborodko N.S.

1Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01033, Ukraine; e-mail: mirror@ukr.net)

Effect of Gas Environment on Electrophysical Parameters of Heterojunctions on the Basis of Schottky Barrier with Nano-Structured (95% In2O3 + 5% SnO2) Oxide Films

Section: Solid Matter
Original Author's Text: Ukrainian

Abstract: Electrophysical characteristics of gas-sensitive Ni – (95% In2O3 + 5% SnO2) – p-Si heterojunctions have been studied experimentally. The analysis of their current-voltage characteristics (CVCs) registered in various gas environments reveals a significant increase of the reverse current through specimens in the atmosphere of ethanol or isopropyl vapor. Various mechanisms of current flow through the heterojunction are considered to explain this phenomenon. Variations in the potential barrier height under the action of image forces are demonstrated to play a significant role in shifts of the reverse CVC branches of examined specimens. The image force changes are explained by the influence of the adsorbate on the dielectric permittivity of oxide films.

Key words: gas sensors, adsorption, dielectric permittivity, image forces, Schottky barrier.


  1. D. Kohl, J. Phys. D 34, R125 (2001).   https://doi.org/10.1088/0022-3727/34/19/201
  2. G. Korotcenkov and B.K. Cho, Crit. Rev. Solid State Mater. Sci. 35, 1 (2010).   https://doi.org/10.1080/10408430903245369
  3. G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).   https://doi.org/10.1080/10408430490888977
  4. M.M. Arafat, B. Dinan, S.A. Akbar, and A.S.M.A. Haseeb, Sensors 12, 7207 (2012).   https://doi.org/10.3390/s120607207   PubMed   PubMedC
  5. V.A. Skryshevsky, O.V. Tretiak, V.A. Vikulov, V.M. Zinchuk, F. Koch, and Th. Dittrich, Phys. Status Solidi A 197, 534 (2003).   https://doi.org/10.1002/pssa.200306559
  6. G. Zhang and M. Liu, Sensor. Actuat. B 69, 144 (2000).   https://doi.org/10.1016/S0925-4005(00)00528-1
  7. S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, and J.A. Darr, Langmuir 28, 1879 (2012).   https://doi.org/10.1021/la203565h   PubMed
  8. H. Wang, K. Dou, W.Y. Teoh, Y. Zhan, T.F. Hung, F. Zhang, J. Xu, R. Zhang, and A.L. Rogach, Adv. Funct. Mater. 23, 4847 (2013).   https://doi.org/10.1007/978-3-642-33596-9   PubMed   PubMedC
  9. S.K. Gupta, A. Joshi, and M. Kaur, J. Chem. Sci. 122, 57 (2010).   https://doi.org/10.1007/s12039-010-0006-y
  10. V.G. Litovchenko, T.I. Gorbanyuk, V.S. Solntsev, and A.A. Evtukh, Appl. Surf. Sci. 234, 262 (2004).   https://doi.org/10.1016/j.apsusc.2004.05.146f
  11. V. Strikha, V.A. Skryshevsky, V. Polishchuk, E. Souteyrand, and J.-R. Martin, J. Porous Mat. 7, 111 (2000).   https://doi.org/10.1023/A:1009634720436
  12. D.B. Dimitrov, Phys. Rev. B 51, 1562 (1995).   https://doi.org/10.1103/PhysRevB.51.1562
  13. D. Stievenard and D. Deresmes, J. Appl. Phys. Lett. 67, 1570 (1995).   https://doi.org/10.1063/1.114942
  14. V.A. Vikulov, V.I. Strikha, V.A. Skryshevsky, S.S. Kilchitskaya, E. Souteyrand, and J.-R. Martin, J. Phys. D 33, 1957 (2000).   https://doi.org/10.1088/0022-3727/33/16/304
  15. V.I. Strikha, Contact Phenomena in Semiconductors (Vyshcha Shkola, Kyiv, 1982) (in Russian).
  16. E.H. Rhoderick, Metal–Semiconductor Contacts (Clarendon Press, Oxford, 1978).
  17. V.S. Solntsev, V.G. Litovchenko, T.I. Gorbanyuk, and A.A. Evtukh, SPQEO 11, 381 (2008).
  18. O.Y. Bomk, L.G. Ilchenko, V.V. Ilchenko, G.V. Kuznetsov, V.M. Pinchuk, O.M. Pinchuk, and B.I. Strikha, Ukr. Fiz. Zh. 44, 759 (1999).
  19. Y. Hijikata, Physics and Technology of Silicon Carbide Devices (InTech, 2002).