• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.29-37
https://doi.org/10.15407/ujpe61.01.0029    Paper

Vakarchuk I.O., Hryhorchak O.I., Pastukhov V.S., Prytula R.O.

Ivan Franko National University of L’viv
(12, Dragomanov Str., Lviv 79005, Ukraine; e-mail: chair@franko.lviv.ua)

Effective Mass of 4He Atom in Superfluid and Normal Phases

Section: Soft matter
Original Author's Text: Ukrainian

Abstract: The formula for the temperature dependence of the effective mass of a 4He atom in the superfluid and normal phases is obtained. This expression for the effective mass allows one to eliminate infra-red divergences, being applicable at all temperatures, except for a narrow fluctuation region 0.97 ≤T/Tc≤ 1. In the high and low temperature limits, as well as in the interactionless limit, the obtained expression reproduces the well known results. The temperature dependence of the heat capacity and the phase transition temperature Tc≈2.18 K are calculated, by using the formula obtained for the effective mass. In the framework of the approach proposed in this work, the small critical index η is determined in the random phase approximation. The obtained value corresponds to the well known result.

Key words: liquid 4He, effective mass, critical temperature, critical indices.

References:

  1. F. London, Phys. Rev. 54, 947 (1938).   https://doi.org/10.1103/PhysRev.54.947
  2. E.A. Pashitskii, Fiz. Nizk. Temp. 25, 115 (1999).
  3. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).   https://doi.org/10.1103/RevModPhys.71.463
  4. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).   https://doi.org/10.1103/RevModPhys.80.885
  5. R.P. Feynman, Phys. Rev. 91, 1291 (1953).   https://doi.org/10.1103/PhysRev.91.1291
  6. P. Pieri, G.C. Strinati, and I. Tifrea, Euro. Phys. J. B 22, 79 (2001).   https://doi.org/10.1088/0143-0807/22/1/308
  7. H.T.C. Stoof, Phys. Rev. A 45, 8398 (1992).   https://doi.org/10.1103/PhysRevA.45.8398   PubMed
  8. G. Baym, J.-P. Blaizot, M. Holzmann, F. Lalo¨e, and D. Vautherin, Phys. Rev. Lett. 83, 1703 (1999).   https://doi.org/10.1103/PhysRevLett.83.1703
  9. M. Holzmann and W. Krauth, Phys. Rev. Lett. 83, 2687 (1999).   https://doi.org/10.1103/PhysRevLett.83.2687
  10. P. Arnold, G. Moore, and B. Tomaˇsik, Phys. Rev. A 65, 013606 (2002).   https://doi.org/10.1103/PhysRevA.65.013606
  11. B. Kastening, Phys. Rev. A 69, 043613 (2004).   https://doi.org/10.1103/PhysRevA.69.043613
  12. V.A. Kashurnikov, N.V. Prokof'ev, and B.V. Svistunov, Phys. Rev. Lett. 87, 120402 (2001).   https://doi.org/10.1103/PhysRevLett.87.120402   PubMed
  13. P. Arnold and G. Moore, Phys. Rev. Lett. 87, 120401 (2001).   https://doi.org/10.1103/PhysRevLett.87.120401   PubMed
  14. J.D. Reppy, B.C. Crooker, B. Hebral, A.D. Corwin, J. He, and G.M. Zassenhaus, Phys. Rev. Lett. 84, 2060 (2000).   https://doi.org/10.1103/PhysRevLett.84.2060   PubMed
  15. A. Isihara and T. Samulski, Phys. Rev. B 16, 1969 (1977).   https://doi.org/10.1103/PhysRevB.16.1969
  16. I.O. Vakarchuk, Visn. Lviv. Univ. Ser. Fiz. 26, 29 (1993).
  17. A.A. Rovenchak, Fiz. Nizk. Temp. 29, 145 (2003).
  18. I.O. Vakarchuk, J. Phys. Stud. 1, 25 (1996).
  19. I.O. Vakarchuk, J. Phys. Stud. 1, 156 (1997).
  20. M.L. Ristig, T. Lindenau, M. Serhan, and J.W. Clark, J. Low Temp. Phys. 114, 317 (1999).   https://doi.org/10.1023/A:1022580417790
  21. T. Lindenau, M.L. Ristig, J.W. Clark, and K.A. Gernoth, J. Low Temp. Phys. 129, 143 (2002).   https://doi.org/10.1023/A:1020844106524
  22. K.A. Gernoth, M. Serhan, and M.L. Ristig, Phys. Rev. B 78, 054513 (2008).   https://doi.org/10.1103/PhysRevB.78.054513
  23. K.A. Gernoth and M.L. Ristig, Int. J. Mod. Phys. B 23, 4096 (2009).   https://doi.org/10.1142/S0217979209063286
  24. I.O. Vakarchuk and R.O. Prytula, J. Phys. Stud. 12, 4001 (2008).
  25. I.O. Vakarchuk, V.S. Pastukhov, and R.O. Prytula, Ukr. J. Phys. 57, 1214 (2012).
  26. I.O. Vakarchuk, J. Phys. Stud. 8, 223 (2004).
  27. I.O. Vakarchuk, Theor. Math. Phys. 154, 6 (2008).   https://doi.org/10.1007/s11232-008-0003-1
  28. R.A. Ferrell and D.J. Scalapino, Phys. Lett. A 41, 371 (1972);   https://doi.org/10.1016/0375-9601(72)90934-6
    Phys. Rev. Lett. 29, 413 (1972).  https://doi.org/10.1103/PhysRevLett.29.413
  29. R. Abe, Prog. Theor. Phys. 49, 1877 (1973).   https://doi.org/10.1143/PTP.49.1877
  30. M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, Phys. Rev. B 74, 144506 (2006).   https://doi.org/10.1103/PhysRevB.74.144506
  31. I.O. Vakarchuk and R.O. Prytula, J. Phys. Stud. 11, 259 (2007).
  32. R.J. Donnelly and C. F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998).   https://doi.org/10.1063/1.556028"
  33. I.O. Vakarchuk, V.V. Babin, and A.A. Rovenchak, J. Phys. Stud. 4, 16 (2000).
  34. I.O. Vakarchuk, Introduction to the Many-Body Problem (Ivan Franko Lviv National University, Lviv, 1999) (in Ukrainian).
  35. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).   https://doi.org/10.1103/RevModPhys.67.279
  36. V.D. Arp, R.D. McCarty, and D. G. Friend, Natl. Inst. Stand. Technol. Tech. Note 1334 (revised) (1998).
  37. V.D. Arp, Int. J. Thermophys. 26, 1477 (2005).   https://doi.org/10.1007/s10765-005-8098-1