• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.12-21
https://doi.org/10.15407/ujpe61.01.0012    Paper

Kovtun Yu.V.

National Science Center “Kharkiv Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
(1, Akademichna Str., Kharkiv 61108, Ukraine; e-mail: Ykovtun@kipt.kharkov.ua)

Energy Expenditure for Water Molecule Ionization by Electron Impact in Weakly Ionized Plasma

Section: Plasmas and Gases
Original Author's Text: Ukrainian

Abstract: The energy balance of the water molecule ionization by a monoenergetic electron beam with the energy of primary electrons in the interval of 15–1000 eV has been calculated. The dependences of the ionization cost on the water ionization degree within the interval from 0 to 0.1 are obtained. The ionization cost is shown to increase with the ionization degree. In particular, for a primary electron energy of 1000 eV, it increases from 25.26 to 52.45 eV in the examined ionization degree interval.

Key words: ionization cost, ionization degree, water molecule, electrons.

References:

  1. M. Larsson, W.D. Geppert, and G. Nyman, Rep. Prog. Phys. 75, 066901 (2012).   https://doi.org/10.1088/0034-4885/75/6/066901   PubMed
  2. D.W. Savin, N.S. Brickhouse, J.J. Cowan et al., Rep. Prog. Phys. 75, 036901 (2012).   https://doi.org/10.1088/0034-4885/75/3/036901   PubMed
  3. R.K. Hobbie and B.J. Roth, Intermediate Physics for Medicine and Biology (Springer, New York, 2007).   PubMed
  4. V.M. Byakov and S.V. Stepanov, Usp. Fiz. Nauk 176, 487 (2006).   https://doi.org/10.3367/UFNr.0176.200605b.0487
  5. D.X. Liu, P. Bruggeman, F. Iza et al., Plasma Sources Sci. Technol. 19, 025018 (2010).   https://doi.org/10.1088/0963-0252/19/2/025018
  6. G.D. Alkhazov, Zh. Tekhn. Fiz. 41, 2513 (1971).
  7. S. Samukawa, M. Hori, S. Rauf et al., J. Phys. D. 45, 253001 (2012).   https://doi.org/10.1088/0022-3727/45/25/253001
  8. P. Bruggeman and C. Leys, J. Phys. D. 42, 053001 (2009).   https://doi.org/10.1088/0022-3727/42/5/053001
  9. Y. Yang, A. Fridman, and Y.I. Cho, Adv. Heat Transf. 42, 179 (2010).   https://doi.org/10.1016/S0065-2717(10)42003-1
  10. A.A. General and Yu.O. Shpenyk, Ukr. Fiz. Zh. 58, 116 (2013).
  11. E.I. Skibenko, V.B. Yuferov, I.V. Buravilov et al., Ukr. J. Phys. 53, 356 (2008).
  12. E.I. Skibenko, Yu.V. Kovtun, A.I. Skibenko, and V.B. Yuferov, in Proceedings of the 15-th International Conference on Physics of Pulse Discharges in Condensed Media, Mykolaiv (2011), p. 70 (in Russian).
  13. E.I. Skibenko, Yu.V. Kovtun, A.I. Skibenko, and V.B. Yuferov, Tech. Phys. 57, 188 (2012).   https://doi.org/10.1134/S1063784212020260
  14. Yu.V. Kovtun, E.I. Skibenko, and V.B. Yuferov, in Proceedings of the 16-th International Conference on Physics of Pulse Discharges in Condensed Media, Mykolaiv (2013), p. 30 (in Russian).
  15. V.Ya. Ushakov, V.F. Klimkin, and S.M. Korobeynikov, Impulse Breakdown of Liquids (Springer, Berlin, 2007).
  16. Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005).   https://doi.org/10.1063/1.1799251
  17. C.G. Elles, A.E. Jailaubekov, R.A. Crowell, and S.E. Bradforth, J. Chem. Phys. 125, 044515 (2006).   https://doi.org/10.1063/1.2217738   PubMed
  18. J.B. Hasted, Physics of Atomic Collisions (Butterworths, London, 1964).
  19. H.S.W. Massey and E.H.S. Burhop, Electronic and Ionic Impact Phenomena (Clarendon Press, Oxford, 1952).
  20. A. Dalgarno, Min Yan, and Weihong Liu, Astrophys. J. Suppl. 125, 237 (1999).   https://doi.org/10.1086/313267
  21. A. Dalgarno and G. Lejeune, Planet. Space Sci. 19, 1653 (1971).   https://doi.org/10.1016/0032-0633(71)90126-7
  22. J.L. Fox, A. Dalgarno, and G.A. Victor, Planet. Space Sci. 25, 71 (1977).   https://doi.org/10.1016/0032-0633(77)90119-2
  23. T.E. Cravens, G.A. Victor, and A. Dalgarno, Planet. Space Sci. 23, 1059 (1975).   https://doi.org/10.1016/0032-0633(75)90196-8
  24. J.L. Fox and A. Dalgarno, Planet. Space Sci. 27, 491 (1979).   https://doi.org/10.1016/0032-0633(79)90126-0
  25. J.L. Fox and G.A. Victor, Planet. Space Sci. 36, 329 (1988).   https://doi.org/10.1016/0032-0633(88)90123-7
  26. Weihong Liu and G.A. Victor, Astrophys. J. 435, 909 (1994).   https://doi.org/10.1086/174872
  27. T. Shirai, T. Tabata, and H. Tawara, At. Data Nucl. Data Tabl. 79, 143 (2001).   https://doi.org/10.1006/adnd.2001.0866
  28. Y. Itikawa and N. Mason, Phys. Rep. 414, 1 (2005).   https://doi.org/10.1016/j.physrep.2005.04.002
  29. J. Tennyson, N.F. Zobov, R. Williamson, and O.L. Polyansky, J. Phys. Chem. Ref. Data. 30, 735 (2001).   https://doi.org/10.1063/1.1364517
  30. M.A. Khakoo, C. Winstead, and V. McKoy, Phys. Rev. A 79, 052711 (2009).   https://doi.org/10.1103/PhysRevA.79.052711
  31. P.A. Thorn, M.J. Brunger, P.J.O. Teubner et al., J. Chem. Phys. 126, 064306 (2007).   https://doi.org/10.1063/1.2434166   PubMed
  32. P.A. Thorn, M.J. Brunger, H. Kato et al., J. Phys. B 40, 697 (2007).   https://doi.org/10.1088/0953-4075/40/4/005
  33. P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009).   https://doi.org/10.1186/1754-0429-2-1
  34. W. Lotz, Z. Phys. 206, 205 (1967).   https://doi.org/10.1007/BF01325928
  35. S.Y. Truong, A.J. Yencha, A.M. Juarez et al., Chem. Phys. 355, 183 (2009).   https://doi.org/10.1016/j.chemphys.2008.12.009
  36. S.Y. Truong, A.J. Yencha, A.M. Juares et al., Chem. Phys. Lett. 474, 41 (2009).   https://doi.org/10.1016/j.cplett.2009.04.036
  37. T. Harb, W. Kedzierski, and J.W. McConkey, J. Chem. Phys. 115, 5507 (2001).   https://doi.org/10.1063/1.1397327
  38. Kaijun Yuan, Lina Cheng, Yuan Cheng et al., J. Chem. Phys. 131, 074301 (2009).   https://doi.org/10.1063/1.3168398   PubMed
  39. A.N. Zavilopulo, F.F. Chipaev, and O.B. Shpenik, Zh. Tekhn. Fiz. 75, 19 (2005).
  40. S.W.J. Scully, J.A. Wyer,V. Senthil et al., Phys. Rev. A 73, 040701 (2006).   https://doi.org/10.1103/PhysRevA.73.040701
  41. H. Sann, T. Jahnke, T. Havermeier et al., Phys. Rev. Lett.106, 133001 (2011).   https://doi.org/10.1103/PhysRevLett.106.133001   PubMed
  42. H.B. Pedersen, C. Domesle, L. Lammich et al., Phys. Rev. A 87, 013402 (2013).   https://doi.org/10.1103/PhysRevA.87.013402
  43. F. Fremont, C. Leclercq, A. Hajaji et al., Phys. Rev. A 72, 042702 (2005).   https://doi.org/10.1103/PhysRevA.72.042702
  44. S.J. King and S.D. Price, Int. J. Mass Spectrom. 277, 84 (2008).   https://doi.org/10.1016/j.ijms.2008.06.004
  45. D.J. Haxto, C.W. McCurdy, and T.N. Rescigno, Phys. Rev. A 75, 012710 (2007).   https://doi.org/10.1103/PhysRevA.75.012710
  46. J.M. Valentine and S.C. Curran, Rep. Prog. Phys. 21, 1 (1958).   https://doi.org/10.1088/0034-4885/21/1/301
  47. R.H. Garvey and A.E.S. Green, Phys. Rev. A 14, 946 (1976).   https://doi.org/10.1103/PhysRevA.14.946
  48. S.P. Khare, J. Phys. B 3, 971 (1970).   https://doi.org/10.1088/0022-3700/3/7/011
  49. S.P. Khare, Rad. Res. 64, 106 (1975).   https://doi.org/10.2307/3574172   PubMed
  50. Y.-K. Kim and M.E. Rudd, Phys. Rev. A 50, 3954 (1994).   https://doi.org/10.1103/PhysRevA.50.3954   PubMed
  51. W. Hwanga, Y.-K. Kim, and M.E. Rudd, J. Chem. Phys. 104, 2956 (1996).   https://doi.org/10.1063/1.471116
  52. M.A. Bolorizadeh and M.E. Rudd, Phys. Rev. A 33, 882 (1986).   https://doi.org/10.1103/PhysRevA.33.882
  53. G.J. Kutcher and A.E.S. Green, Rad. Res. 67, 408 (1976).   https://doi.org/10.2307/3574338   PubMed
  54. C. Champion, Phys. Med. Biol. 48, 2147 (2003).   https://doi.org/10.1088/0031-9155/48/14/308   PubMed
  55. J.A. La Verne and A. Mozumder, Rad. Res. 131, 1 (1992).   https://doi.org/10.2307/3578309   PubMed
  56. D. Combecher, Rad. Res. 84, 189 (1980).   https://doi.org/10.2307/3575293
  57. G.P. Stonell, M. Marshall, and J.A. Simmon, Rad. Res. 136, 341 (1993).   https://doi.org/10.2307/3578546   PubMed
  58. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Taylor and Francis, Boca Raton, FL, 2010).   PubMed

    /li>