• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2016, Vol. 61, N 1, p.75-87
https://doi.org/10.15407/ujpe61.01.0075    Paper

Goriachko A.1, Melnik P.V.1, Nakhodkin M.G.2

1 Department of Physical Electronics, Taras Shevchenko National University of Kyiv
(4G, Academician Glushkov Ave., Kyiv 03022, Ukraine; e-mail: andreandy2000@gmail.com)
2 Department of Nanophysics and Nanoelectronics, Taras Shevchenko National University of Kyiv
(4G, Academician Glushkov Ave., Kyiv 03022, Ukraine)

A Suggestion of the Graphene/Ge(111) Structure Based on Ultra-High Vacuum Scanning Tunneling Microscopy Investigation

Section: Nanosystems
Original Author's Text: English/Ukrainian

Abstract: We report on the 5.5√3 × 5.5√3 − R30° overlayer superstructure observed by the scanning tunneling microscopy on the Ge(111) surface. It shows pronounced effects of the local density of states leading to the strong dependence of STM images on the bias voltage and some dynamic changes of images at 300K. This overlayer is tentatively interpreted as graphene formed in small submonolayer amounts due to the pyrolysis of hydrocarbon constituents of the residual atmosphere of the vacuum chamber during the annealing of a Ge(111) sample at 900K. We suggest a model of the graphene/Ge(111)-5.5√3 × 5.5√3 − R30° heteroepitaxial interface, featuring the reconstructed Ge(111) substrate with no long-range order under the graphene layer, the latter being corrugated due to spatial variations of the interatomic geometry of the Ge(111) and graphene(0001) atomic lattices with extremely large mismatch.

Key words: germanium, graphene, scanning tunneling microscopy.

References:

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004).   https://doi.org/10.1126/science.1102896   PubMed
  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres et al., Rev. Mod. Phys. 81, 109 (2009).   https://doi.org/10.1103/RevModPhys.81.109
  3. J. Wintterlin and M.-L. Bocquet, Surf. Sci. 603, 1841 (2009).   https://doi.org/10.1016/j.susc.2008.08.037
  4. U. Starke and C. Riedl, J. of Phys.: Cond. Matt. 21, 134016 (2009).   https://doi.org/10.1088/0953-8984/21/13/134016   PubMed
  5. S. Akc¨oltekin, M.El. Kharrazi, B. K¨ohler et al., Nanotechn. 20, 155601 (2009).   https://doi.org/10.1088/0957-4484/20/15/155601   PubMed
  6. P. Blake, E.W. Hill, A.H. Castro Neto et al., Appl. Phys. Lett. 91, 063124 (2007).   https://doi.org/10.1063/1.2768624
  7. A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007).   https://doi.org/10.1038/nmat1849   PubMed
  8. L. Simon, M Stoffel, P. Sonnet et al., Phys. Rev. B 64, 035306 (2001).   https://doi.org/10.1103/PhysRevB.64.035306
  9. C. Oshima and A. Nagashima, J. of Phys.: Cond. Matt. 9, 1 (1997).   https://doi.org/10.1088/0953-8984/9/1/004
  10. A. Banerjee and H. Grebel, Nanotechn. 19, 365303 (2008).   https://doi.org/10.1088/0957-4484/19/36/365303   PubMed
  11. R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagr. 5, 484 (1984).   https://doi.org/10.1007/BF02872901
  12. H.E. Elsayed-Ali and X. Zeng, Surf. Sci. 538, 23 (2003).   https://doi.org/10.1016/S0039-6028(03)00699-X
  13. G. Wang, M. Zhang, Y. Zhu et al., Sci. Reports 3, 2465 (2013).   PubMed   PubMedC
  14. I.V. Lyubinetsky, P.V. Melnik, N.G. Nakhodkin et al., Vacuum 46, 219 (1995).   https://doi.org/10.1016/0042-207X(94)00047-6
  15. I.V. Lyubinetsky, Ukr. J. Phys. 60, 160 (2015).   https://doi.org/10.15407/ujpe60.02.0160
  16. A. Goriachko, P.V. Melnik, M.G. Nakhodkin, Ukr. J. Phys. 60, 1132 (2015).   https://doi.org/10.15407/ujpe60.11.1132
  17. A. Goriachko, P.V. Melnik, A. Shchyrba et al., Surf. Sci. 605, 1771 (2011).   https://doi.org/10.1016/j.susc.2011.06.004
  18. A. Goriachko, A. Shchyrba, P.V. Melnik et al., Ukr. J. Phys. 59, 805 (2014).   https://doi.org/10.15407/ujpe59.08.0805
  19. R.S. Becker, B.S. Swartzentruber, J.S. Vickers et al., Phys. Rev. B 39, 1633 (1989).   https://doi.org/10.1103/PhysRevB.39.1633
  20. E.S. Hirschorn, D.S. Lin, F.M. Leibsle et al., Phys. Rev. B 44, 1403 (1991).   https://doi.org/10.1103/PhysRevB.44.1403
  21. G. Lee, H. Mai, I. Chizhov et al., J. of Vac. Sci. and Techn. A 16, 1006 (1998).   https://doi.org/10.1116/1.581222
  22. G. Lee, H. Mai, I. Chizhov et al., Surf. Sci. 463, 55 (2000).   https://doi.org/10.1016/S0039-6028(00)00596-3
  23. S. Marchini, S. G¨unther, J. Wintterlin, Phys. Rev. B 76, 075429 (2007).   https://doi.org/10.1103/PhysRevB.76.075429
  24. A. Goriachko, H. Over, Zeit. Phys. Chem. 223, 157 (2009).   https://doi.org/10.1524/zpch.2009.6030
  25. B. Borca, S. Barja, M. Garnica et al., Semicond. Sci. Techn. 25, 034001 (2010).   https://doi.org/10.1088/0268-1242/25/3/034001
  26. A. Goriachko, P.V. Melnik, M.G. Nakhodkin et al., Materialwiss. Werkstofftech. 44, 129 (2013).   https://doi.org/10.1002/mawe.201300108
  27. A.J. Mayne, F. Rose, C. Bolis et al., Surf. Sci. 486, 226 (2001).   https://doi.org/10.1016/S0039-6028(01)01057-3