• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 9, p.880-884
https://doi.org/10.15407/ujpe60.09.0880    Paper

Khorolskyi O.V., Rudenko O.P.

Poltava V.G. Korolenko National Pedagogical University
(2, Ostrogradskyi Str., Poltava 36000, Ukraine; e-mail: khorolskiy.alexey@gmail.com)

Viscometric Research of Concentration Regimes for Polyvinyl Alcohol Solutions

Section: Soft matter
Original Author's Text: Ukrainian

Abstract: Experimental researches are carried out for the concentration and temperature dependences of the kinematic viscosity and the density of diluted and semidiluted solutions of polyvinyl alcohols (PVAs) with hydrolysis degrees of 85.2 ± 1.0 mol.% and 98.4 ± 0.4 mol.% in dimethyl sulfoxide and water. Critical concentrations of the transition from the diluted solution to more concentrated regimes are calculated. The results of calculations show that the critical crossover concentrations for PVA solutions in dimethyl sulfoxide are lower than that for PVA aqueous solutions. The obtained temperature dependences of the effective hydrodynamic radii of macromolecules in the diluted PVA solutions testify that this parameter decreases, as the temperature grows.

Key words: polyvinyl alcohol, viscometry, crossover concentration, solution.

References:

  1. S.N. Ushakov, Polyvinyl Alcohol and Its Derivatives (Izd. Akad. Nauk SSSR, Moscow, 1960) (in Russian).
  2. F.W. Harris and L.K. Post, J. Polym. Sci. Polym. Lett. Ed. 13, 225 (1975). CrossRef
  3. A.K. Bajpai, S.K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci. 33, 1088 (2008). CrossRef
  4. J. Kopeˇcek and K. Ulbrich, Prog. Polym. Sci. 9, 1 (1983). CrossRef
  5. T V. Chirila, Ye Hong, P.D. Dalton, I.J. Constable, and M.F. Refojo, Prog. Polym. Sci. 23, 475 (1998). CrossRef
  6. E.T. Zhilyakova, O.O. Novikov, M.A. Khalikova, N.N. Popov, N.N. Sabelnikova, and L.M. Danilenko, Nauch. Vedom. Belgorod. Gos. Univ. Ser. Med. Pharm. 93, 47 (2010).
  7. D.L. Deskins, Sh. Ardestani, and P.P. Young, J. Vis. Exp. 62, 3885 (2012).
  8. A.A. Ryabtseva and Sheikh M.H. Rahman, Klinich. Oftalmol. 2, 70 (2001).
  9. Siddaramaiah, T.M. Pramod Kumar, and V. Ravi, J. Macromol. Sci. A 44, 229 (2007).
  10. D. Paul, Prog. Polym. Sci. 14, 597 (1989). CrossRef
  11. J.H. Braybrook and L.D. Hall, Prog. Polym. Sci. 15, 715 (1990). CrossRef
  12. I.I. Adamenko, L.A. Bulavin, V. Ilyin, S.A. Zelinsky, and K.O. Moroz, J. Mol. Liq. 127, 90 (2006). CrossRef
  13. L.A. Bulavin, A I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008). CrossRef
  14. N.A. Atamas, A.M. Yaremko, L.A. Bulavin V.E. Pogorelov, S. Berski, Z. Latajka, H. Ratajczak, and A. AbkowiczBie’nko, J. Mol. Struct. 605, 187 (2002). CrossRef
  15. A. Gordon and G. Ford, The Chemist's Companion: A Handbook of Practical Data, Techniques, and References (Wiley, New York, 1972).
  16. Yu.B. Mel'nichenko, V.V. Klepko, V.V. Shilov, V.B. Ivanitskij, and L.A. Bulavin, Vysokomolek. Soedin. A 33, 1849 (1991).
  17. Yu.B. Mel'nichenko and L.A. Bulavin, Polymer 32, 3295 (1991). CrossRef
  18. L.A. Bulavin, N.L. Sheiko, Y.F. Zabashta, and T.Y. Nikolayenko, Ukr. J. Phys. 55, 1045 (2010).
  19. L.A. Bulavin, E.Yu. Aktan, and Yu.F. Zabashta, Polymer Sci. B 47, 109 (2005).
  20. L.A. Bulavin, E.Yu. Aktan, and Yu.F. Zabashta, Vysokomolek. Soedin. Kratk. Soobshch. 44, 1536 (2002).
  21. P.G. Babaevskii, P.A. Kozlov, and E.B. Trostyanskaya, Vysokomolek. Soedin. A 28, 426 (1986).
  22. B.E. Geller, A.A. Geller, and V.G. Chirtulov, Practical Guide to Physical Chemistry of Fiber-Forming Polymers (Khimiya, Moscow, 1996) (in Russian).
  23. M. Matsumoto and Y. Otanagi, J. Polymer Sci. ¯ 46, 441 (1960). CrossRef
  24. M. Kawaguchi, A. Sano, and A. Takahashi, Polymer J. 13, 1019 (1981). CrossRef
  25. C. Meng Kok and A. Rudin, Europ. Polym. J. 18, 363 (1982). CrossRef
  26. Q. Ying and B. Chu, Macromolecules 20, 362 (1987). CrossRef
  27. A. Einstein, Ann. Phys. 19, 289 (1906). CrossRef
  28. N.S. Klimenko, A.V. Shevchuk, S.A. Peleshanko, M.Ya. Vortman, E.G. Privalko, V.V. Shevchenko, and V.V. Tsukruk, Polymer. Zh. 28, 42 (2006).
  29. A.V. Khorolskyi and A.P. Rudenko, Vesn. Grodzen. Dzyarzh. Univ. Ser. 2. Matem. Fiz. Infarm. Vylich. Tekhn. Kirav. 192, 101 (2015).