• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 9, p.854-860
https://doi.org/10.15407/ujpe60.09.0854    Paper

Makhlaichuk V.M.

I.I. Mechnikov National University of Odesa
(2, Dvoryans’ka Str., Odesa 65026, Ukraine; e-mail: interaktiv@ukr.net)

Kinematic Shear Viscosity of Water, Aqueous Solutions of Electrolytes, and Ethanol

Section: Soft Matter
Original Author's Text: Ukrainian

Abstract: The nature of the kinematic shear viscosity in associated (water and aqueous solutions of electrolytes) and strongly associated (alcohols) liquids has been studied. The behavior of the kinematic shear viscosity is shown to be governed by orientational correlations and the translational motion of molecules, which is characteristic of argon. The former mechanism dominates in the supercooled area and in normal states close to the triple point. The latter one is responsible for the viscosity at higher temperatures. The characteristic temperature tH separating those areas is found to be close to the triple point in the case of water and electrolyte aqueous solutions, and to the critical point in the case of ethanol. The agreement with experimental data is quite satisfactory.

Key words: viscosity, water, ethanol.

References:

  1. D. Eisenberg and V. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, New York, 1969).
  2. Byung Chan Eu, Transport Coefficients of Fluids (Springer, Berlin, 2011).
  3. J.P. Hsu and S.H. Lin, J. Chem. Phys. 118, 172 (2003). CrossRef
  4. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).
  5. E.N. da C. Andrade, Nature 125, 309 (1930).
  6. R. Casalini and C.M. Roland, J. Non-Cryst. Solids 353, 3936 (2007). CrossRef
  7. Yu. Pan, L.E. Boyd, J.F. Kruplak, W.E. Cleland, J.S. Wilkes, and Ch.L. Hussey, J. Electrochem. Soc. 158, F1 (2011). CrossRef
  8. F.M. Gacino, X. Paredes, M.J.P. Comunas et al., J. Chem. Thermodyn. 62, 162, 2013. CrossRef
  9. V. Blazhnov, N.P. Malomuzh, and S.V. Lishchuk, J. Chem. Phys. 121, 6435 (2004). CrossRef
  10. L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008). CrossRef
  11. N.P. Malomuzh and V.P. Oleynik, Zh. Strukt. Khim. 49, 1055 (2008).
  12. A.M. Zaitseva and I.Z. Fisher, Zh. Strukt. Khim. 4, 3 (1963).
  13. I.Z. Fisher and A.M. Zaitseva, Zh. Strukt. Khim. 4, 331 (1963).
  14. I.Z. Fisher and A.M. Zaitseva, Dokl. Akad. Nauk SSSR 154, 1175 (1964).
  15. L.A. Bulavin, I.V. Zhyganiuk, M.P. Malomuzh, and K.M. Pankratov, Ukr. Fiz. Zh. 56, 894, (2011).
  16. L.A. Bulavin, N.P. Malomuzh, and K.S.Shakun, Ukr. Fiz. Zh. 50, 653 (2005).
  17. L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 183, 453(2008).
  18. N.P. Malomuzh and V.P. Oleynik, J. Struct. Chem. (Russia) 49,1093 (2008).
  19. N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, Zh. Strukt. Khim. 54, Suppl. 1, S24, (2013).
  20. H.R. Pruppacher, J. Chem. Phys. 56, 101 (1972). CrossRef
  21. K. Yao, M. Okada, Y. Hiejima, H. Kohno, and Y. Kojihara, J. Chem. Phys. 110, 3026 (1999). CrossRef
  22. A.Z. Patashinskii and V.L. Pokrovsky, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1982).
  23. M. Nishio, Phys. Chem. Chem. Phys. 13, 13873 (2011). CrossRef
  24. V.L. Kulinskii and N.P. Malomuzh, Phys. Rev. E 67, 011501 (2003). CrossRef
  25. J. Kestin, H.E. Khalifa, and R.J. Correia, J. Phys. Chem. Ref. Data 10, 71 (1981). CrossRef
  26. C. Leforestiera, F. Gatti, R.S. Fellers, and R.J. Saykally, J. Chem. Phys. 117, 8710 (2002). CrossRef
  27. R.M. Shields, B. Temelso, K.A. Archer, T.E. Morrell, and G.C. Shields, J. Phys. Chem. A 114, 11725 (2010). CrossRef
  28. I.V. Zhyganiuk, Ph. D. thesis Microscopic Theory of Interaction between Water Molecules (Kyiv Univ., Kyiv, 2013) (in Ukrainian).
  29. P.V. Makhlaichuk, Ph. D. thesis Role of Hydrogen Bonds in Formation of Water Properties (Odesa University, Odesa, 2013) (in Ukrainian).
  30. S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 374, 2084, (2010). CrossRef
  31. J. Kestin, J.V. Sengers, B. Kamgar-Parsi, and J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13, 175, (1984). CrossRef
  32. http://thermalinfo.ru/publ/zhidkosti/voda_i_rastvory/teplofizicheskie_sv....
  33. P. Golub, I. Doroshenko, V. Pogorelov, V. Sablinskas, V. Balevicius, and J. Ceponkus, Papers Phys. 2013, 473294 (2013).
  34. R.A. Provencal, R.N. Casaes, K. Roth, J.B. Paul, Ch.N. Chapo, and R.J. Saykally, J. Phys. Chem. A 104, 1423,(2000). CrossRef
  35. B.G. Lone, P.B. Undre, S.S. Patil, P.W. Khirade, and S.C. Mehrotra, J. Mol. Liq. 141, 47, (2008). CrossRef
  36. V. Dyczmons, J. Phys. Chem. A 108, 2080, (2004). CrossRef
  37. N.B. Vargaftik, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures (Hemisphere, Washington, 1983).
  38. Y. Tanaka, Y. Matsuda, H. Fujira, H. Kubota, and T. Makita, Int. J. Thermophys. 8, 147 (1987). CrossRef
  39. M.J. Assael and S.K. Polimatidou, Int. J. Thermophys. 15, 95 (1994). CrossRef
  40. S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 375, 2656, (2011). CrossRef