• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 9, p.960-974
https://doi.org/10.15407/ujpe60.09.0960    Paper

Zhyganiuk I.V.1, Malomuzh M.P.2

1 Institute of Environmental Geochemistry, Nat. Acad. of Sci. of Ukraine
(34a, Palladin Ave., Kyiv 03680, Ukraine; e-mail: zhyganiuk@gmail.com)
2 I.I. Mechnikov National University of Odessa
(2, Dvoryans’ka Str., Odessa 65026, Ukraine)

Physical Nature of Hydrogen Bond

Section: General Problems of Theoretical Physics
Original Author's Text: Ukrainian

Abstract: The physical nature and the correct definition of hydrogen bond (H-bond) are considered. The influence of H-bonds on the thermodynamic, kinetic, and spectroscopic properties of water is analyzed. The conventional model of H-bonds as sharply directed and saturated bridges between water molecules is incompatible with the behavior of the specific volume, evaporation heat, and self-diffusion and kinematic shear viscosity coefficients of water. On the other hand, it is shown that the variation of the dipole moment of a water molecule and the frequency shift of valence vibrations of a hydroxyl group can be totally explained in the framework of the electrostatic model of H-bond. At the same time, the temperature dependences of the heat capacity of water in the liquid and vapor states clearly testify to the existence of weak H-bonds. The analysis of a water dimer shows that the contribution of weak H-bonds to its ground state energy is approximately 4–5 times lower in comparison with the energy of electrostatic interaction between water molecules. A conclusion is made that H-bonds have the same nature in all other cases where they occur.

Key words: hydrogen valence vibrations of a water molecule, frequency shift, hydrogen bond, electrostatic origin.


  1. N.D. Sokolov, Usp. Fiz. Nauk 57, 205 (1955). CrossRef
  2. I.V. Zhyganiuk, Dopov. Nat. Akad. Nauk Ukr. N 8, 77 (2009).
  3. I.V. Zhyganiuk, Ukr. Fiz. Zh. 56, 225, (2011).
  4. M.D. Dolgushin and V.M. Pinchuk, Theoretical Study of the Nature of Hydrogen Bond by Means of Comparative Calculations, Preprint ITP-76-49R (Institute for Theoretical Physics, Kyiv, 1976) (in Russian).
  5. R.L. Fulton and P. Perhacs, J. Phys. Chem. A 102, 9001 (1998). CrossRef
  6. P. Barnes, J.L. Finney, J.D. Ncholas, and J.E. Quinn, Nature 282, 459 (1979). CrossRef
  7. H.C. Berendsen and G.A. van der Velde, in Proceedings of Workshop on Molecular Dynamics and Monte Carlo Calculations on Water in CECAM, edited by H.J.C. Berendsen (CECAM Orsay, 1972), p. 63.
  8. E. Clementi and H. Popkie, J. Chem. Phys. 57, 1077 (1972). CrossRef
  9. F.H. Stillinger and C.W. David, J. Chem. Phys. 69, 1473 (1978). CrossRef
  10. V.Ya. Antonchenko, A.S. Davydov, and V.V. Ilyin, Fundamentals of Physics of Water (Naukova Dumka, Kyiv, 1991) (in Russian).
  11. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, J. Chem. Phys. 79, 926 (1983). CrossRef
  12. V.I. Poltev, T.A. Grokhlina, and G.G. Malenkov, J. Biomolec. Struct. Dynam. 2, 413 (1984). CrossRef
  13. O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976). CrossRef
  14. J.O. Hirschfelder, Ch.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967).
  15. D. Eisenberg and W. Kautzman, The Structure and Properties of Water (Oxford Univ. Press, Oxford, 1968).
  16. M. Rieth, Nano-Engineering in Science and Technology: An Introduction to the World of Nano-Design, edited by C. Politis and W. Schommers (World Scientific, Karlsruhe, 2003). CrossRef
  17. S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 375, 2656 (2011). CrossRef
  18. L.A. Bulavin, Neutron Diagnostics of Liquid Matter State (Institute for Safety Problems of Nuclear Power Plants, Chornobyl, 2012) (in Ukrainian).
  19. L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008). CrossRef
  20. N.A. Atamas, A.M. Yaremko, L.A. Bulavin, V.E. Pogorelov, S. Berski, Z. Latajka, H. Ratajczak, and A. AbkowiczBienko, J. Mol. Struct. 605, 187 (2002). CrossRef
  21. I.I. Adamenko, L.A. Bulavin, V. Ilyin, S.A. Zelinsky, and K.O. Moroz, J. Mol. Liq. 127, 90 (2006). CrossRef
  22. A.I. Fisenko, N.P. Malomuzh, and A.V. Oleynik, Chem. Phys. Lett. 450, 297 (2008). CrossRef
  23. S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 374, 2084 (2010). CrossRef
  24. N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, J. Struct. Chem. 54, 205 (2013). CrossRef
  25. I.V. Zhyganiuk and M.P. Malomuzh, Ukr. Fiz. Zh. 59, 1183 (2014).
  26. E.W. Lemmon, M.O. McLinden, and D.G. Friend, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Inst. of Standards and Technology, Gaithersburg, MD, 2015) [http://webbook.nist.gov].
  27. J. Naghizadeh and S.A. Rice, J. Chem. Phys. 36, 2710 (1962). CrossRef
  28. R. Laghaei, A.E. Nasrabad, and Byung Chan Eu, J. Phys. Chem. B 109, 5873 (2005). CrossRef
  29. L.A. Bulavin, I.V. Zhyganiuk, M.P. Malomuzh, and K.M. Pankratov, Ukr. Fiz. Zh. 56, 894 (2011).
  30. J.C. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, and S.H. Lee, J. Phys. Chem. B 102, 4193 (1998). CrossRef
  31. D. Hilbert, Theory of Algebraic Invariants (Cambridge Univ. Press, Cambridge, 1993).
  32. P. Blanckenhagen, Ber. Bunsenges. Phys. Chem. 76, 891 (1972).
  33. T.V. Lokotosh, N.P. Malomuzh, and K.N. Pankratov, J. Chem. Eng. Data 55, 2021 (2010). CrossRef
  34. D. McCall and D. Douglass, J. Phys. Chem. 69, 2001 (1965). CrossRef
  35. E.R. Nightingale, J. Phys. Chem. 63, 1381 (1959). CrossRef
  36. J.E. House, Inorganic Chemistry (Academic Press, San Diego, 2008).
  37. Sheng-Bai Zhu, Surjit Singh, and G. Wilse Robinson, J. Chem. Phys. 95, 2791 (1991). CrossRef
  38. U. Buck and F. Huisken, Chem. Rev. 100, 3863 (2000). CrossRef
  39. Yusuke Jin and Shun-ichi Ikawa, J. Chem. Phys. 119, 12432 (2003). CrossRef
  40. K.M. Benjamin, A.J. Schultz, and D.A. Kofke, Ind. Eng. Chem. Res. 45, 5566 (2006). CrossRef
  41. N. Goldman, R.S. Fellers, C. Leforestier, and R.J. Saykally, J. Phys. Chem. A 105, 515 (2001). CrossRef
  42. T.V. Lokotosh, N.P. Malomuzh, and V.L. Zakharchenko, Zh. Strukt. Khim. 44, 1104 (2003).
  43. N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, Zh. Strukt. Khim. 54, S24 (2013).
  44. A. Hantzsch, Ber. Deutsch. Chem. Ges. 43, 3049 (1910). CrossRef
  45. W.M. Latimer and W.H. Rodebush, J. Amer. Chem. Soc. 42, 1419 (1920). CrossRef
  46. L. Pauling, J. Amer. Chem. Soc. 57, 2680 (1935). CrossRef
  47. T.V. Lokotosh and O.M. Gorun, Fiz. Nizk. Temp. 29, 179 (2003).
  48. C.A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 2009).
  49. P.V. Makhlaichuk, M.P. Malomuzh, and I.V. Zhyganiuk, Ukr. Fiz. Zh. 57, 113 (2012).
  50. H. Berendsen, J. Postma, W. Van Gunsteren, and J. Hermans, Intermolec. Forces 14, 331 (1981). CrossRef
  51. H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987). CrossRef
  52. C. Weiss, C. Wagner, R. Temirov, and F.S. Tautz, J. Am. Chem.Soc. 132, 11864 (2010). CrossRef