• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 9, p.932-937
https://doi.org/10.15407/ujpe60.09.0932    Paper

Mchedlov-Petrossyan N.O.1, Kamneva N.N.1, Kryshtal A.P.2, Marynin A.I.3, Zakharevich V.B.3, Tkachenko V.V.1

1 Department of Physical Chemistry, V.N. Karazin National Kharkiv University
(Kharkiv 61022, Ukraine)
2 Department of Physics and Technology, V.N. Karazin National Kharkiv University
(Kharkiv 61022, Ukraine)
3 National University of Food Technologies
(68, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

The Properties of 3 nm-Sized Detonation Diamond from the Point of View of Colloid Science

Section: Nanosystems
Original Author's Text: English

Abstract: The colloidal properties of the hydrosol of a detonation nanodiamond have been considered and discussed. The 3nm-sized positively charged colloidal species produced by the NanoCarbon Research Institute, Japan, undergo a further aggregation on the dilution. They exhibit the emission at 625 nm with the excitation maximum at 491 nm, adsorb anionic dyes, and readily coagulate at the adding of electrolytes. The coagulation occurs in line with the Schulze–Hardy rule, the coagulation strength of the anions follows the Hofmeister series, whereas the abnormally high influence of the most hydrophilic anion, HO-, allows revealing the acidic character of the positive surface charge. The hypothesis of the so-called periodic colloidal structures has been put forward in order to explain the dependence of the particle size on the concentration of the hydrosol and the high viscosity of the initial 5.0 wt./vol. % detonation nanodiamond colloid.

Key words: detonation nanodiamonds, hydrosol, regularities of coagulation, origin of the particle charge, transmission electron microscopy, dynamic light scattering, size–concentration dependence.

References:

  1. E. Osawa, in Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, edited by S. Soumiya (Elsevier, Amsterdam, 2013), Chapter 2.3, p. 89. CrossRef
  2. E. Osawa, Pure Appl. Chem. 80, 1365 (2008). CrossRef
  3. V.N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nature Nano 7, 11 (2012). CrossRef
  4. O.A. Shenderova and D.M. Gruen, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, edited by D.M. Gruen, O.A. Shenderova (Elsevier, Oxford, 2012).
  5. E. Osawa, S. Sasaki and R. Yamanoi, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, edited by D.M. Gruen, O.A. Shenderova (Elsevier, Oxford, 2012).
  6. N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald and D.W. Brenner, Diamond and Related Mater. 18, 620 (2009). CrossRef
  7. M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Kr¨uger, and E. Osawa, Adv. Mater. 19, 1201 (2007). CrossRef
  8. O.A. Williams, J. Hees, C. Dieker, W. J¨ager, L. Kirste, and C. E. Nebel, ACS Nano, 4, 4824 (2010). CrossRef
  9. N.O. Mchedlov-Petrossyan, Chem. Rev. 113, 5149 (2013). CrossRef
  10. T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, T.Y. Kang, C.L. Cheng, and P. Bergonzo, Nanoscale 4, 6792 (2012). CrossRef
  11. J.T. Paci, H.B. Man, B. Saha, D. Ho, and G.C. Schatz, J. Phys. Chem. C 117, 17256 (2013). CrossRef
  12. J. Hees, A. Kriele, and O.A. Williams, Chem. Phys. Lett. 509, 12 (2011). CrossRef
  13. X. Xu, Z. Yu, Y. Zhu, and B. Wang, Diamond and Related Mater. 14, 206 (2005). CrossRef
  14. N. Gibson, T.-J. Luo, O. Shenderova, A. Koscheev, and D. Brenner, J. Nanoparticle Res. 14, 1 (2012). CrossRef
  15. N.O. Mchedlov-Petrossyan, N.N. Kamneva, A.I. Marynin, A.P. Kryshtal, and E. Osawa, Phys. Chem. Chem. Phys. 17, 16186 (2015). CrossRef
  16. Y. Marcus, Langmuir 29, 2881 (2013). CrossRef
  17. A. N. Zhukov, F. R. Gareeva, and A. E. Aleksenskii, Colloid J. 74, 463 (2012). CrossRef
  18. A.S. Barnard, J. Mat. Chem. 18, 4038 (2008). CrossRef
  19. A.S. Barnard and E. Osawa, Nanoscale 6, 1188 (2014). CrossRef
  20. A.Y. Vul, E. D. Eydelman, M. Inakuma, and E. Osawa, Diamond and Related Mater. 16, 2023 (2007). CrossRef
  21. I.F. Efremov, Periodic Colloidal Structures (Khimiya, Leningrad, 1971) (in Russian).
  22. I.F. Efremov and O.G. Us'yarov, Russ. Chem. Rev. 45, 435 (1976). CrossRef
  23. H. Sonntag, K. Strenge, and B. Vincent, Coagulation Kinetics (Springer, New York, 1987). CrossRef
  24. M.V. Avdeev, N. N. Rozhkova, V.L. Aksenov, V.M. Garamus, R. Willumeit, and E. Osawa, J. Phys. Chem. C 113, 9473 (2009). CrossRef
  25. M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk, L.A. Bulavin, V.M. Garamus, and E. Osawa, J. of Phys. Conden. Matter 25, 445001 (2013). CrossRef
  26. O.V. Tomchuk, D.S. Volkov, L.A. Bulavin, A.V. Rogachev, M.A. Proskurnin, M.V. Korobov, and M.V. Avdeev J. Phys. Chem. C 119, 794 (2015). CrossRef
  27. M.V. Avdeev, N.N. Rozhkova, V.L. Aksenov, V.M. Garamus, R. Willumeit, and E. Osawa, J. Phys. Chem. C 113, 9473 (2009). CrossRef
  28. F. Gareeva, N. Petrova, O. Shenderova, and A. Zhukov, Coll. Surf. A: Phys. Chem. Eng. Asp. 440, 202 (2014). CrossRef
  29. M.V. Korobov, M.M. Batuk, N.V. Avramenko, N.I. Ivanova, N.N. Rozhkova, and E. Osawa, Diamonds and Related Mater. 19, 665 (2010). CrossRef
  30. M.V. Korobov, D.S. Volkov, N.V. Avramenko, L.A. Belyaeva, P.I. Semenyuk, and M.A. Proskurnin, Nanoscale 5, 1529 (2013). CrossRef
  31. A. M. Aparkin, G.V. Nazarov, V.A. Zlobin, P.E. Kuznetsov, S.M. Rogacheva, and I.A. Sogunenko, Colloid J. 65, 725 (2003). CrossRef