• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 9, p.910-916
https://doi.org/10.15407/ujpe60.09.0910    Paper

Lebovka N.I.1, Bulavin L.A.2, Melnyk I.A.2, Repnin K.F.2, Kovalchuk V.I.2

1 F.D. Ovcharenko Biocolloidal Chemistry Institute, Nat. Acad. of Sci. of Ukraine
(42, Academician Vernadsky Blvd., Kyiv 03142, Ukraine; e-mail: lebovka@gmail.com)
2 Taras Shevchenko National University of Kyiv, Faculty of Physics
(2, Academician Glushkov Prosp., Kyiv 03022, Ukraine)

Impact of Aggregation on the Percolation Anisotropy on a Square Lattice in an Elongated Geometry

Section: Solid matter
Original Author's Text: English

Abstract: The Monte Carlo simulation is applied to study the impact of the aggregation on the percolation anisotropy on a square lattice in the elongated Lx X Ly geometry. An interactive cluster-growth model, in which the probability of occupying a site on a lattice fz is dependent on the number of occupied neighboring sites z is used. The value of fz is 1/r at z = 0 and is equal to 1 in other cases. The degree of the aggregation parameter r ≥ 1 controls the morphology of aggregates. The transition from r = 1 to r →∞ corresponds to the transition from the ordinary random percolation to the percolation of compact Eden clusters. The effects of the lattice aspect ratio a = Lx/Ly (Lx > Ly ) on the finite-size scaling and the electrical conductivity are studied. The data evidence that the percolation threshold pc goes through the minimum, and the finite-size effects are enhanced with increase in r. The dependence of the electrical conductivity on the measuring direction (x or y) at different values of r and a is discussed.

Key words: aggregation, anisotropy, correlated percolation, elongated systems, electrical conductivity.

References:

  1. D. Stauffer, in Quantum and Semi-Classical Percolation and Breakdown in Disordered Solids (Springer, Berlin, 2009), p. 1. CrossRef
  2. S. De and J. Coleman, MRS Bulletin 36, 774 (2011). CrossRef
  3. A. Weinrib, Phys. Rev. B 29, 387 (1984). CrossRef
  4. S. Safran, I. Webman, and G. Grest, Phys. Rev. A 32, 506 (1985). CrossRef
  5. L. Duckers and R. Ross, Phys. Lett. A 49, 361 (1974). CrossRef
  6. L. Duckers, Phys. Lett. A 67, 93 (1978). CrossRef
  7. J.W. Evans, J.A. Bartz, and D.E. Sanders, Phys. Rev. A 34, 1434 (1986). CrossRef
  8. D. Sanders and J. Evans, Phys. Rev. A 38, 4186 (1988). CrossRef
  9. S.R. Anderson and F. Family, Phys. Rev. A 38, 4198 (1988). CrossRef
  10. J.W. Evans, J. Phys. A 23, L197 (1990). CrossRef
  11. E.T. Gawlinski and H.E. Stanley, J. Phys. A 14, L291 (1981). CrossRef
  12. D. Wollman, M. Dubson, and Q. Zhu, Phys. Rev. B 48, 3713 (1993). CrossRef
  13. A. Sadiq and M. Khan, Z. Phys. B 39, 131 (1980). CrossRef
  14. T. Odagaki, H. Kawai, and S. Toyofuku, Physica A 266, 49 (1999). CrossRef
  15. M. Gimenez, A. Ramirez-Pastor, and F. Nieto, Physica A 389, 1521 (2010). CrossRef
  16. N.I. Lebovka, S.S. Manna, S. Tarafdar, and N. Teslenko, Phys. Rev. E 66, 066134 (2002). CrossRef
  17. P. Sotta and D. Long, Eur. Phys. J. E 11, 375 (2003). CrossRef
  18. L. Zekri, A. Kaiss, J.-P. Clerc, B. Porterie, and N. Zekri, Phys. Lett. A 375, 346 (2011). CrossRef
  19. A. Kapitulnik and G. Deutscher, J. Phys. A 16, 2889 (1983). CrossRef
  20. D.R. Stevens, E.W. Skau, L.N. Downen, M.P. Roman, and L.I. Clarke, Phys. Rev. E 84, 021126 (2011). CrossRef
  21. Y.-B. Yi, C.-W. Wang, and A.M. Sastrya, J. Electrochem. Soc. 151, A1292 (2004). CrossRef
  22. G. Deutscher, Phys. Rev. B 25, 490 (1982). CrossRef
  23. Y. Gefen, Y. Kantor, and G. Deutscher, J. Phys. A 15, L553 (1982). CrossRef
  24. R. Monetti and E. Albano, Z. Phys. B 82, 129 (1991). CrossRef
  25. R. Monetti and E. Albano, Z. Phys. 90, 351 (1993). CrossRef
  26. R. Monetti and E. Albano, J. Phys. A 26(16), 3955 (1993). CrossRef
  27. R.A. Monetti and E.V. Albano, Phys. Rev. E 49, 199 (1994). CrossRef
  28. H.-P. Hsu, S.C. Lin, and C.-K. Hu, Phys. Rev. E 64, 016127 (2001). CrossRef
  29. S.J. Marrink and M.A. Knackstedt, J. Phys. A 32, L461 (1999). CrossRef
  30. S.J. Marrink and M.A. Knackstedt, Phys. Rev. E 62, 3205 (2000). CrossRef
  31. S. Tsubakihara, Phys. Rev. E 62, 8811 (2000). CrossRef
  32. J. Schmelzer, S.A. Brown, A. Wurl, M. Hyslop, and R.J. Blaikie, Phys. Rev. Lett. 88, 226802 (2002). CrossRef
  33. E. Meilikhov, Phys. Lett. A 346, 193 (2005). CrossRef
  34. M. Masihi, P.R. King, and P. Nurafza, Phys. Rev. 74, 42102 (2006). CrossRef
  35. A.V. Neimark, Zh. Eksp. Teor. Fiz. 98, 611 (1990).
  36. M. Nakamura, J. Non-Cryst. Sol. 849, 156158 (1993).
  37. T. Kiefer, G. Villanueva, and J. Brugger, Phys. Rev. E 80, 21104 (2009). CrossRef
  38. L.A. Bulavin, N.V. Vygornitskii, and N.I. Lebovka, Computer Simulation of Physical Systems (Intellect, Dolgoprudnyi, 2011) (in Russian).
  39. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Boca Raton, 1992).
  40. D.J. Frank and C.J. Lobb, Phys. Rev. B 37, 302 (1988). CrossRef
  41. V.A. Cherkasova, Y.Y. Tarasevich, N.I. Lebovka, and N.V. Vygornitskii, Eur. Phys. J. B 74, 205 (2010). CrossRef
  42. R.M. Ziff and M.E.J. Newman, Phys. Rev. E 66, 016129 (2002). CrossRef