• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 7, p.656-663
https://doi.org/10.15407/ujpe60.07.0656   Paper

Ponezha E.A.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrologichna Str., Kyiv 03680, Ukraine)

Relaxation Times and Correlation Functions under the Influence of Cross-Correlated Colored Noises for the Model of Resonant Tunneling

Section: General Problems of Theoretical Physics
Language: English

Abstract: The effects of cross-correlated noises on the process of relaxation of fluctuations in the model of resonant tunneling, in which the noise sources due to incident flow intensity fluctuations and frequency fluctuations are assumed to exist, are considered. To characterize the dynamical behavior of the system, the normalized correlation functions and the associated relaxation times are calculated with the help of a projection-operator technique with regard for memory effects. The influence of noise intensities, their correlation times, and the strength of correlation between the noises on these functions has been analyzed. It is found that the strength of a cross-correlation between two noises can facilitate the intensity fluctuation decay. The behavior of the relaxation time with respect to that of the strength of noises can be characterized as a stochastic resonance phenomenon. It is shown that an enhancement of the self-correlation time of the intensity fluctuations accelerates the transition from the unstable state, while the growth of the self-correlation time of frequency fluctuations results in the retardation of the transition, thereby stabilizing the system.

Key words: resonant tunneling, intensity correlation function, associated relaxation time, strength of cross-correlation, external colored noises.

References:

  1. S. Zhu, A.W. Yu, and R. Roy, Phys. Rev. A 34, 4333 (1986). CrossRef
  2. R.F. Fox and R. Roy, Phys. Rev. A 35, 1838 (1987). CrossRef
  3. M. Aguado and M. San Miguel, Phys. Rev. A 37, 450 (1988). CrossRef
  4. M. Aguado, E. Hernandez-Garcia, and M. San Miguel, Phys. Rev. A 38, 5670 (1988). CrossRef
  5. A. Fulinski and T. Telejko, Phys. Lett. A 152, 11 (1991). CrossRef
  6. Wu Da-jin, Cao Li, and Ke Sheng-zhi, Phys. Rev. E 50, 2496 (1994). CrossRef
  7. Ya Jia and Jia-rong Li, Phys. Rev. Lett. 78, 994 (1997). CrossRef
  8. D. Mei, C. Xie, and Li Zhang, Phys. Rev. E 68, 051102 (2003). CrossRef
  9. Han Li-Bo, Cao Li, Wu Da-Jin, and Wang Jun, Commun. Theor. Phys. (Beijing, China) 42, 59 (2004). CrossRef
  10. Ping Zhu, Eur. Phys. J. B 55, 447 (2007). CrossRef
  11. C-J. Wang, Q. Wei, and B-C. Mei, Phys. Lett. A 372, 2176 (2008). CrossRef
  12. A. Hernandez-Machado, M. San Miguel, and J.M. Sancho, Phys. Rev. A 29, 3388 (1984). CrossRef
  13. A. Hernandez-Machado, J. Casademunt, M.A. Rodriguez, L. Pesquera, and M. Noriega, Phys. Rev. A 43, 1744 (1991). CrossRef
  14. M. Noriega, L. Pesquera, and M.A. Rodriguez, Phys. Rev. A 43, 4008 (1991). CrossRef
  15. M. Noriega, L. Pesquera, and M.A. Rodriguez, J. Casademunt, Phys. Rev. A 44, 2094 (1991). CrossRef
  16. V.V. Mitin, V.A. Kochelap, and M.A. Stroscio, Introduction to Nanoelectronics. Science, Nanotechnology, Engineering, and Applications (Cambridge Univ. Press, Cambridge, 2008).
  17. A.S. Davydov and V.N. Ermakov, Physica D 28, 168 (1987). CrossRef
  18. V.N. Ermakov and E.A. Ponezha, Metallofiz. Nov. Techn. 30, 585 (2008).
  19. E.A. Ponezha, Ukr. J. Phys. 55, 244 (2010).
  20. V.N. Ermakov and E.A. Ponezha, Metallofiz. Nov. Techn. 33, 45 (2011).
  21. E.A. Ponezha, Metallofiz. Nov. Techn. 36, 713 (2014).
  22. E.A. Novikov, JETP 47, 1919 (1964).
  23. P. Jung and P. H¨anggi, J. Opt. Soc. Am. B 5, 979 (1988). CrossRef