• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 7, p.648-655
https://doi.org/10.15407/ujpe60.07.0648   Paper

Bondar N.V.1, Brodyn M.S.1, Matveevskaya N.A.2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03680, Ukraine; e-mail: jbond@iop.kiev.ua)
2 Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
(60, Lenin Ave., Kharkiv, 61178, Ukraine)

Quantum-Size Effect and Exciton Percolation in Porous and Disordered Films on the Basis of Spherical “Core/Shell” Elements

Section: Nanosystems
Language: English

Abstract: The results of spectroscopic researches of porous and disordered films fabricated on the basis of spherical elements of the “core/shell” type, SiO2/CdS nanoparticles (SiO2 spheres covered with CdS quantum dots) are reported. The quantum-size effect of excitons in the quantum dots located on the surface of spheres is found to depend on the sphere size and to weakly depend on the quantum dot radius, which results from the quantization of the exciton motion normally to the sphere surface. The quantization survives, even if the sphere coverage exceeds the exciton percolation threshold. To evaluate the latter in the film plane and to determine the critical concentration of SiO2/CdS nanoparticles, a number of specimens on the basis of the mixtures 20–80% SiO2 : 80–20% SiO2/CdS are studied. The exciton percolation threshold is registered in those structures for the first time at a fraction of SiO2/CdS nanoparticles in the mixture of about 60%, which is twice as high as the value predicted by the hard sphere model. A qualitative explanation of this phenomenon is proposed.

Key words: exciton, quantum-size effect, exciton percolation, quantum dot.

References:

  1. R.G. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012). CrossRef
  2. G.E. Cragg and A.L. Efros, Nano Lett. 10, 313 (2010). CrossRef
  3. S. Zallen, The Physics of Amorphous Solids (Wiley-VCH, Weinheim, 2004).
  4. W. Stober and A. Fink, J. Coll. Interface Sci. 26, 62 (1968). CrossRef
  5. N. Arul Dhas, A. Zaban, and A. Gedanken, Chem. Matt. 11, 806 (1999). CrossRef
  6. A.L. Rogach, D. Nagesha, J.W. Ostrander, M. Giersig, and N.A. Kotov, Chem. Matt. 12, 2676 (2000). CrossRef
  7. O.C. Monteiro, A. Catarina, C. Esteves, and T. Trindade, Chem. Matt. 14, 2900 (2002). CrossRef
  8. M. Darbandi, R. Thomann, and T. Nann, Chem. Matt. 17, 5720 (2005). CrossRef
  9. J. Yu, W. Liu, and H. Yu, Cryst. Growth Design 8, 930 (2008). CrossRef
  10. T. Aubert, S.J. Soenen, D. Wassmuth, M. Cirillo, R. van Deun, K. Braeckmans, and Z. Hens, ASC Appl. Matt. Interfaces 6, 11714 (2014). CrossRef
  11. Ch. Song-yuan, L. Liu, and S.A. Asher, J. Am. Chem. Soc. 116, 6739 (1994). CrossRef
  12. Y. Fang, W.S. Loc, W. Lu, and J. Fang, Langmuir 27, 14091 (2011). CrossRef
  13. T.W. Melnyk, O. Knop, and W.R. Smith, Can. J. Chem. 55, 1745 (1977). CrossRef
  14. N.V. Bondar and M.S. Brodyn, Semiconductors 46, 625 (2012). CrossRef
  15. S. Le Goff and B. Stebe, Phys. Rev. B 47, 1383 (1993). CrossRef
  16. N.V. Bondar, M.S. Brodyn, Yu.V. Yermolayeva, and A.V. Tolmachev, Physica E 43, 1882 (2011). CrossRef
  17. S.A. Ioselevich and A.A. Kornyshev, Phys. Rev. E 65, 021301 (2002). CrossRef
  18. N.V. Bondar, J. Luminesc. 130, 1 (2010). CrossRef