• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 7, p.634-647
https://doi.org/10.15407/ujpe60.07.0634   Paper

Kryuchenko Yu.V., Korbutyak D.V.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: kryuchenko@isp.kiev.ua)

Excitonic Emission of Hybrid Nanosystem “Spherical Semiconductor Quantum Dot + Spherical Metal Nanoparticle”

Section: Nanosystems
Language: English

Abstract: The hybrid nanosystem composed of a spherical metal nanoparticle (NP) and a spherical semiconductor quantum dot (QD) of a direct-band semiconductor with a cubic lattice structure and a fourfold degenerate valence band Γ8 has been studied. The excitonic emission of the system is considered as a sum of contributions from point dipoles located at the QD lattice sites. The description of the QD + NP nanosystem, nonspherical as a whole, is based on using three spherical coordinate systems and finding the relations between the coefficients of multipole expansions of electromagnetic (EM) fields in those systems. The origins of two of them are fixed at the centers of NP and QD, and their polar axes are directed along the line connecting the centers. The orientation of the third coordinate system with the origin in the QD is determined by the orientation of the QD crystal lattice. It is shown that, unlike the electric scalar potential, which is induced by the exciton state in the QD and looks like a point-dipole potential, the EM field of the QD excitonic emission cannot be represented as that of a point dipole emission, because it contains only dipole, quadrupole, and octupole components. The multiple scattering, between the NP and the QD, of the EM field emitted by the QD is taken into account. The dependences of the excitonic emission efficiency on the separation distance between the QD and the NP surfaces are calculated in a particular case of the CdTe QD and a silver or gold NP for various QD and NP sizes and temperatures.

Key words: quantum dot, metal nanoparticle, hybrid nanosystem, electromagnetic field, emission quantum yield.


  1. N.C. Bigall, W.J. Parak, and D. Dorfs, Nano Today 7, 282 (2012). CrossRef
  2. R. Jiang, B. Li, C. Fang, and J. Wang, Adv. Mater. 26, 5274 (2014). CrossRef
  3. Yu.V. Kryuchenko and D.V. Korbutyak, Semicond. Phys. Quant. Electr. Optoelectr. 16, 227 (2013). CrossRef
  4. Al.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
  5. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1977).
  6. R.S. Knox, Theory of Excitons (Academic Press, New York, 1964).
  7. S. Fl¨uge, Practical Quantum Mechanics (Springer, Berlin, 1971), Vol. 1.
  8. O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004). CrossRef
  9. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
  10. H. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 2.
  11. J.H. Blokland, V.I. Claesse, F.J.P. Wijnen et al., Phys. Rev. B 83, 035304 (2011). CrossRef
  12. P. Yang and N. Murase, J. Phys.: Conf. Ser. 152, 012009 (2009). CrossRef
  13. L. Jing, L. Yang, R. Qiao, M. Niu, M. Du, D. Wang, and M. Gao, Chem. Mater. 22, 420 (2010). CrossRef
  14. P. Reineck, D. Gomez, S.H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, ACS Nano 7, 6636 (2013). CrossRef
  15. L. Tang, J. Xu, P. Guo, X. Zhuang, Y. Tian, Y. Wang, H. Duan, and A. Pan, Opt. Express 21, 11095 (2013). CrossRef
  16. D. Ban, J. Xue, R. Fang, S. Xu, E. Lu, and P. Xu, J. Vac. Sci. Technol. B 16, 989 (1998). CrossRef
  17. I.M. Kupchak, D.V. Korbutyak, Yu.V. Kryuchenko, A.V. Sachenko, I.O. Sokolovskii, O.M. Sreseli, Semiconductors 40, 94 (2006). CrossRef
  18. Z.A. Weinberg, J. Appl. Phys 53, 5052 (1982). CrossRef
  19. C. Wood and D. Jena, Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, Berlin, 2008). CrossRef
  20. W.W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003). CrossRef
  21. V.V. Klimov, Nanoplasmonics (Nauka, Moscow, 2012) (in Russian).
  22. V.V. Datsyuk, Ukr. J. Phys. 56, 122 (2011).
  23. P.G. Etchegoin, E.C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006). CrossRef
  24. C. S¨onnichsen, Ph.D. thesis (Ludwig Maximilian Univ. of Munich, Munich, 2001).
  25. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972). CrossRef
  26. W.J. Tropf, M.E. Thomas, and T.J. Harris, in Handbook of Optics, edited by M.Bass (McGraw-Hill, New York, 1995), Ch. 33.
  27. S. Emin, A. Loukanov, M. Wakasa, S. Nakabayashi, and Y. Kaneko, Chem. Lett. 39, 654 (2010). CrossRef
  28. S.J. Byrne, S.A. Corr, T.Y. Rakovich et al., J. Mater. Chem. 16, 2896 (2006). CrossRef
  29. A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini, J. Lee, N.A. Kotov, J.M. Slocik, and R.R. Naik, Nano Lett. 6, 984 (2006). CrossRef
  30. R. Ruppin, J. Chem. Phys. 76, 1681 (1982). CrossRef
  31. H. Mertens, A.F. Koenderink, and A. Polman, Phys. Rev. B 76, 115123 (2007). CrossRef
  32. G. Sun and J.B. Khurgin, IEEE J. Select. Topics Quant. Electr. 17, 110 (2011). CrossRef