• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 7, p.620-626
https://doi.org/10.15407/ujpe60.07.0620   Paper

Kozynetz A.V., Skryshevskyi V.A.

Taras Shevchenko National University of Kyiv, Institute of High Technologies
(4g, Academician Glushkov Ave., Kyiv 03127, Ukraine; e-mail: alk@univ.kiev.ua)

Theoretical Analysis of the Efficiency of Silicon Solar Cells with Amorphized Layers in the Space Charge Region

Section: Solid Matter
Language: English

Abstract: A possibility to enhance the efficiency of silicon solar cells by creating an amorphized barrier structure in the space charge region has been demonstrated. The positive effect can be achieved owing to the absorption of infrared photons with energies lower than the silicon band gap and a reduction of the dark current. Optimal parameters of this structure (the barrier height and position in the space charge region) are determined in the framework of the diode theory approximation.

Key words: solar cell, n+-p silicon junction, efficiency, amorphized layer, infrared absorption.


  1. M.A. Green, Progr. Photovolt. Res. Appl. 17, 320 (2009). CrossRef
  2. M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, New York, 2003).
  3. A. Luque, J. Appl. Phys. 110, 031301 (2011). CrossRef
  4. Z.T. Kuznicki and M. Ley, Solar Energy Mater. Solar Cells 72, 613 (2002). CrossRef
  5. Z.T. Kuznicki, Appl. Phys. Lett. 81, 4853 (2003). CrossRef
  6. M. Hossatt, M. Basta, A. Sieradski, and Z.T. Kuznicki, Proc. SPIE 8065, 806508 (2011). CrossRef
  7. Z.T Kuznicki, J.C. Muller, and M.A. Lipinski, in Proceeding of the 23rd IEEE Photovoltaic Specialists Conference (Louisville, USA, 1993), p. 327.
  8. D. Macdonald, K. McLean, J. Mitchel et al., in Proceeding of the 19th European Photovoltaic Solar Energy Conference (Paris, France, 2004), p. 88.
  9. M.J. Keevers, F.W. Saris, and M.A. Green, in Proceeding of the 13th European Photovoltaic Solar Energy Conference (Nice, France, 1999), p. 1215.
  10. M.J. Keevers and M.A. Green, J. Appl. Phys. 75, 4022 (1994). CrossRef
  11. P. Harder and P. Wurfel, in Proceeding of the 19th European Photovoltaic Solar Energy Conference (Paris, France, 2004), p. 84.
  12. H. Kasai, T. Sato, and H. Matsumura, in Proceedings of the 26th Photovoltaic Specialists Conference (Anaheim, USA, 1997), p. 215.
  13. J. Yuan, H. Shen et al., J. Optoelectr. Adv. Mater. 5, 866 (2011).
  14. I.I. Ivanov, V.A. Skryshevsky et al., Renew. Ener. 55, 79 (2013). CrossRef
  15. V.A. Skryshevsky and A. Laugier, Thin Solid Films 346, 261 (1999). CrossRef
  16. J. Bruns, W. Seitfer, P. Wawer, and H. Winnicke, Appl. Phys. Lett. 64, 20 (1994). CrossRef
  17. V.I. Strikha, Contact Phenomena in Semiconductors (Vyshcha Shkola, Kyiv, 1982) (in Russian).
  18. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  19. O.V. Kozynets, V.I. Strikha, Z.T. Kuznicki, and V.A. Skryshevsky, Ukr. Fiz. Zh. 44, 1003 (1999).
  20. M. Rahmouini, A.P. Datta et al., J. Appl. Phys. 107, 054521 (2010). CrossRef
  21. S. Zhong, X. Hua, and W. Shen, Trans. Electr. Devic. 60, 2104 (2013). CrossRef
  22. V.A. Dao, Y. Lee, S. Kim, J. Cho, Sh. Ahn, and Y. Kim, J. Electrochem. Soc. 158, H11292 (2011).
  23. O.V. Kozynets, in Abstracts of the 3rd International Scientific and Practical Conference on Semiconductor Materials, Information Technologies, and Photovoltaics (Kremenchuk, Ukraine, 2014), p. 55 (in Ukrainian).
  24. O. El Daif, E. Drouard, G. Gomard, A. Kaminski et al., Opt. Expr. 18, 293 (2010). CrossRef
  25. Y. Park, E. Drouard, O. El Daif et al., Opt. Expr. 17, 14312 (2009). CrossRef
  26. O V. Kozynets and S.V. Litvinenko, Ukr. J. Phys. 57, 1234 (2012).
  27. A.I. Manilov, A.M. Veremenko, I.I. Ivanov, and V.A. Skryshevsky, Physica E 41, 36 (2008). CrossRef